

WELCOME

TO

This is an Education Platform

We Provide PDF Notes for Pharmacy Students

Web Site <http://www.fdspharmacy.in/>

You tube <https://www.youtube.com/c/FDSpharmacy>

Telegram <https://t.me/Fdspharmacy>

App <https://play.google.com/store/apps/details?id=com.FDSPharmacyMedia.FDSPharmacy>

E-mail fdsparmacyinfo@gmail.com

Bachelor of Pharmacy Communication skills

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Human Anatomy and Physiology I

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Inorganic Chemistry

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Remedial Biology

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutics I

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

D.Pharma B.Pharma

- 👉 PDF Notes
- 👉 Practical Manual
- 👉 Important Questions
- 👉 Assignment etc

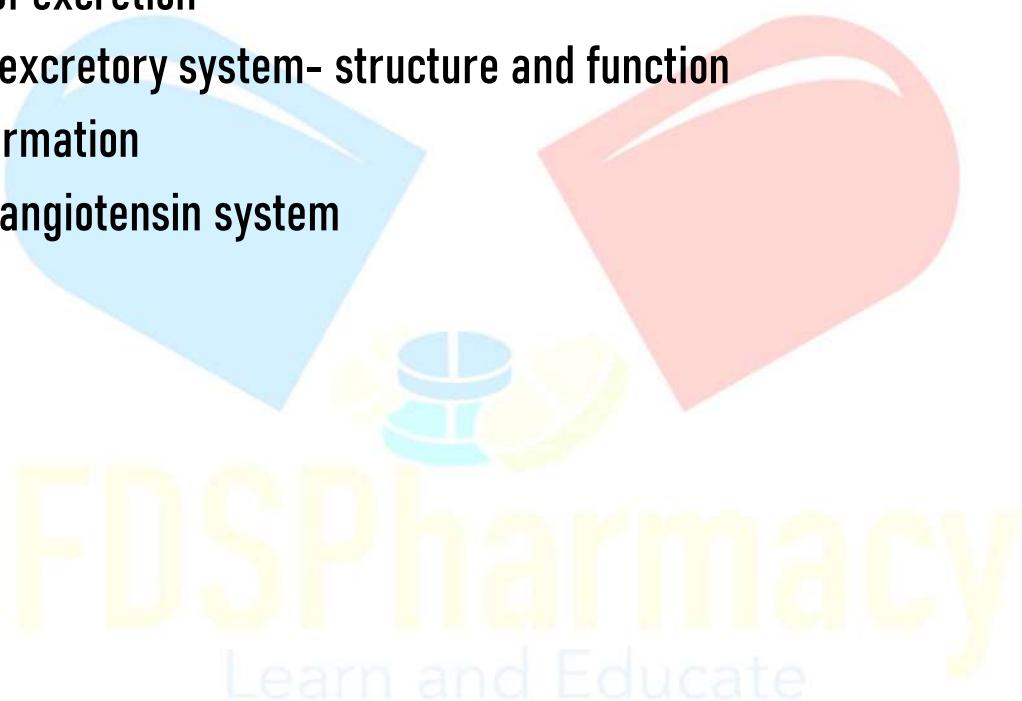
Download Now

www.fdpharmacy.in

REMEDIAL BIOLOGY

UNIT 3

TOPIC :


- **Excretory products and their elimination**

Modes of excretion

Human excretory system- structure and function

Urine formation

Rennin angiotensin system

Excretory products and their elimination

EXCRETION

- Excretion is the biological process of removal of metabolic waste products from the body, which are produced during normal physiological activities like cellular respiration, protein metabolism, and detoxification.
- Different waste products like urea, uric acid, creatinine, bilirubin and ammonia are formed during various reactions taking place in cells.
- These waste products, if accumulated, can become toxic and lead to serious health issues. Thus, excretion is vital for maintaining homeostasis and internal balance.

Modes of Excretion

- **Urine** : Kidneys help to excrete urea, uric acid, creatinine, ammonia through urine. Excess amount of ions like Phosphates, Ca, Na etc. are also excreted through urine. Many drugs, toxins and even excess water are excreted through urine.
- **Feces** : Small amount of water, inorganic salts, bacteria, products of bacterial decomposition, unabsorbed digested materials and indigestible parts of food are excreted in feces. Most of the bilirubin in bile is metabolized in the small intestine by bacteria and eliminated in feces.
- **Sweat** : Very small amounts of salts, carbon dioxide, urea and ammonia are excreted through sweat.

Human excretory system- structure and function

Urinary System

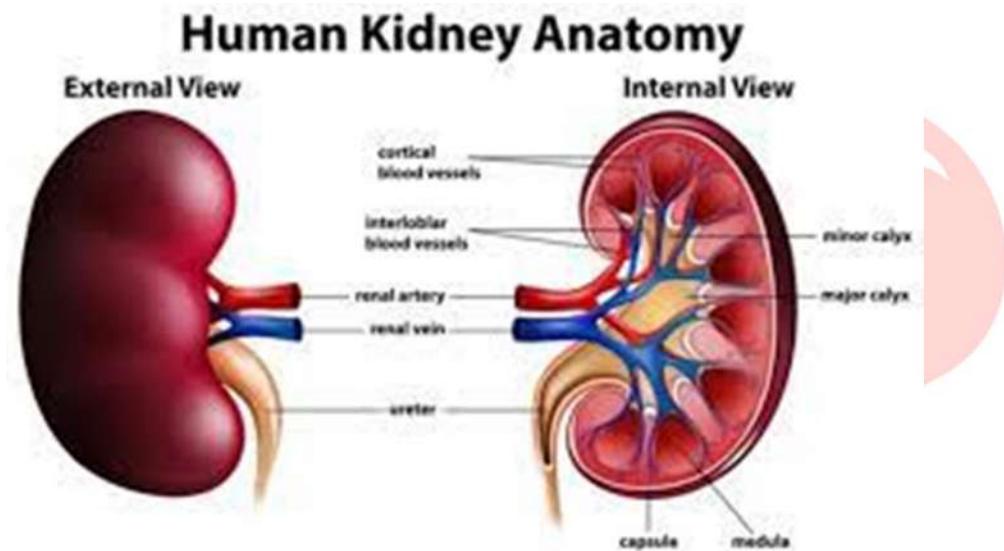
- ⦿ Urinary system of the body is formed by the organs responsible for converting the excess fluid and other substances into urine, its filtration, and its excretion from the body.
- ⦿ These organs include kidneys, ureters, urinary bladder, and urethra. Urine is formed by the kidneys, then sent to the urinary bladder for storage, and finally excreted through urethra.
- ⦿ Urine excretes excess of minerals, vitamins, and blood cells from the body.
- ⦿ Urinary system along with the other systems of the body maintains homeostasis. Kidneys play a major role in homeostasis as they maintain the acid base and water salt balance in the blood.

Parts of Urinary System

The urinary tract is made up of the following organs:

- 1) A pair of kidneys (forming urine).
- 2) A pair of ureters (transporting urine),
- 3) A urinary bladder (storing urine), and
- 4) A urethra (carrying urine outside the body).)

Kidneys


- Kidneys are present in pair in vertebrates as well as in some invertebrates.
- They are the major organs of urinary system.
- They produce urine through which waste materials such as urea and ammonia are excreted.
- They also reabsorb glucose and amino acids.

Along with this, kidneys also perform secretory function, e.g.. calcitriol, erythropoietin, and renin are some of the hormones produced by kidneys.

Kidneys also perform some other homeostatic functions, like:

- 1) Regulate electrolyte balance,
- 2) Maintain acid-base balance, and
- 3) Control the blood pressure.

Anatomy and Physiology

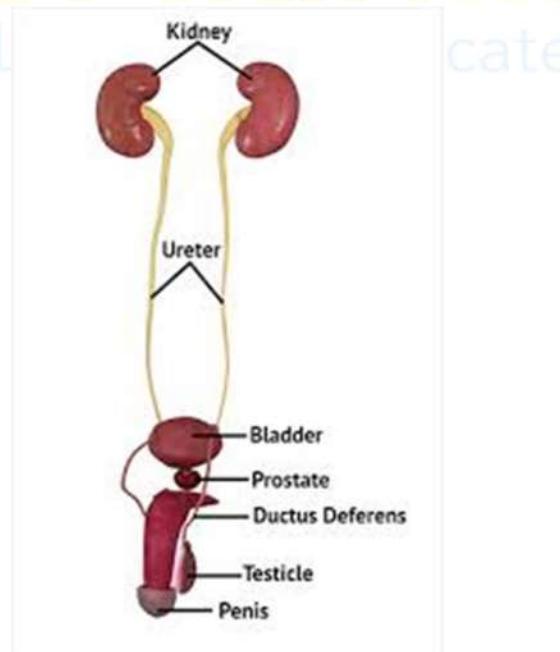
- ◆ Kidneys are bean-shaped and positioned in a retroperitoneal position (ie., between the dorsal body wall and the parietal peritoneum) in the superior lumbar region.
- ◆ The right kidney is present slightly lower than the left. Mass of an adult kidney is about 150gm and is 12cm long, 6cm wide, and 3cm thick.)
- ◆ The kidneys have a convex lateral surface and a concave medial surface. They also have a vertical cleft (the renal hilum) leading into an internal space within the kidney (the renal sinus).
- ◆ Hilum forms the area where the ureters, renal blood vessels, lymphatics, and nerves join the kidney.

Functions

- I. Regulation of Blood Ionic Composition: They regulate the concentration of some ions (Na^+ , K^+ , Cl^- and HPO_4^{2-}) in blood.)

- II. Regulation of Blood pH: They regulate blood pH (Potential of Hydrogen) by excreting H⁺ ions into the urine and conserving HCO₃⁻ ions (an important buffer of H⁺ ions in the blood)
- III. Regulation of Blood Volume: They regulate blood volume by conserving water or eliminating the excess in urine. Blood volume in turn regulates the blood pressure, since an increase in blood volume increases blood pressure and vice versa.
- IV. Regulation of Blood Pressure: They regulate blood pressure by secreting renin enzyme which activates the renin-angiotensin-aldosterone pathway. Renin in increased amount increases the blood pressure.)
- V. Maintenance of Blood Osmolarity: They maintain a constant blood osmolarity [value of which is close to 300 milliosmoles per litre (mOsm/litre)] by regulating loss of water and solutes in the urine.)
- VI. Production of Hormones: They produce calcitriol (the active form of vitamin D) which regulates calcium homeostasis; and erythropoietin which stimulates RBC production.
- VII. Regulation of Blood Glucose Level: They utilise glutamine amino acid in gluconeogenesis (synthesis of new glucose molecules), and then release the resultant glucose into the blood for maintaining the glucose level.
- VIII. Excretion of Wastes and Foreign Substances: They form urine to excrete waste materials (ammonia and urea resulting from deamination of amino acids, bilirubin from catabolism of haemoglobin, creatinine from breakdown of creatine phosphate in muscle fibres, and uric acid from catabolism of nucleic acids), Foreign substances from the diet such as drugs and environmental toxins are also excreted.

Nephrons


→ Nephron is the basic structural and functional unit of the kidney. It filters the blood out [of waste materials, reabsorb the required ones,

and excrete the remaining with urine; thus regulates the concentration of water and soluble substances like sodium salts in the blood

Ureters

- Ureters are paired tubes through which the urine flows from the kidneys to the urinary bladder. Both the tubes begin from the sinus of the corresponding kidney as calyces (short cup-shaped tubes) surrounding the renal papillae. More than one papilla are enclosed within a single calyx; thus the calyces are fewer in number (ranging 7 to 13) than the pyramids (ranging between 8-18).
- The calyces combine with each other to form 2-3 short tubes, which further combine to form renal pelvis (a funnel-shaped dilatation with wide above and narrow below, situated partially inside and partially outside the renal sinus).

Anatomy and Physiology

I. Ureters are 25-30cm long, thick-walled, narrow cylindrical tubes. They begin near the lower end of the kidney with the tapering extremity of the renal pelvis. They run downward and medially in front of the Psoas major, enter the pelvic cavity, and terminate in the fundas of the urinary bladder.

II. Ureter is enclosed within the following three coats

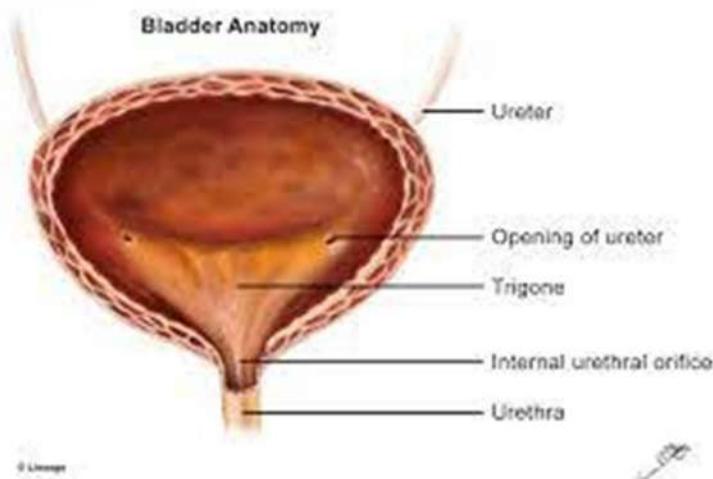
Tunica (Fibrous Coat) : One end of this coat is continuous with the fibrous tunic of the kidney on the sinus floor, and the other end is somewhere within the fibrous bladder.

Tunica Muscularis (Muscular Coat):) This coat in the renal pelvis is further made up of two layers:

- I. Longitudinal Fibre: This layer lies on the sides of the papillae at the extremities of the calyces.
- II. Circular Fibre: This layer surrounds the: medullary substance.

Tunica Mucosa (Mucous Cont):) This smooth coat has a few longitudinal folds which erode on distension. It joins the mucous membrane of the bladder, while it is prolonged over the papillae of the kidney.

Functions


Ureters perform the following functions

- 1) They transport urine from the renal pelvis of the kidney to the urinary bladder.
- 2) Since they pass beneath the urinary bladder, during urination when pressure in the bladder is high the ureters are compressed and back-flow of urine is prevented. Otherwise, cystitis (inflammation of the ureter/urinary bladder) may develop which may lead to a kidney infection.

Urinary Bladder

- Urinary bladder is a hollow (muscular, and distensible or elastic) organ which rests on the pelvic floor.
- It receives urine from the kidneys via the ureters, stores it within, and expels it during urination via the urethra.
- It is a reservoir where urine is stored temporarily.
- The bladder is somewhat spherical in shape, although its shape and size vary from individual to individual and also depends on the urine volume it stores.
- An empty bladder is about the size and shape of a pear. The normal capacity of the bladder is 400 – 600 ml

Anatomy and Physiology

- ➲ Urinary bladder is situated in the pelvic cavity posteriorly to the symphysis pubis, and inferiorly to the parietal peritoneum.

It is made up of three layers

- 1) Mucous Membrane: It is the inner lining of the bladder consisting of transitional epithelium continuous with that of the ureters.

- 2) Submucosa : It is the second layer, consisting of connective tissue with elastic fibres and supporting the mucous membrane.
- 3) Muscularis: It is the outer layer consisting of smooth muscles having fibres interwoven in all directions, collectively termed detrusor muscle.

Functions

Urinary bladder performs the following functions:

- 1) It is a reservoir for urine,
- 2) It expels urine via urethra.

A urinary bladder filled with urine becomes distended.

Urine stimulates the stretch receptors on the bladder wall, which in turn trigger a reflex contraction of the bladder wall muscles and relax the internal sphincter (a valve which remains closed so that the urine remains in the bladder till urination), Soon the external sphincter relaxes and the bladder expels the urine. A parasympathetic nerve fibre transmits a signal that causes bladder contractions and internal sphincter relaxations.

Urethra

- A Urethra is in tube-like structure which transports urine from the urinary bladder to the exterior of the body.
- It forms the "exit tube" of the body for liquid wastes.
- It is closed by the external urethral sphincter (a muscular structure) which keeps the urine in the bladder till urination.
- Mucous membranes form the inner lining of the urethra, and muscular layer forms the outer layer.
- The smooth muscle fibre directs longitudinally The urethral walls have highly specialised urethra glands which constantly secrete mucous coating the urethral canal.

Anatomy and Physiology

- Urethra is made up of two separate urethral sphincter muscles.

- The internal urethral sphincter muscle consists of involuntary smooth muscles, while the external sphincter muscle consists of lower voluntary muscles.
- Detrusor muscle makes up the internal sphincter

The characteristic features of female and male urethra are:

- a. Female Urethra: It is 4cm long and opens to the exterior via urethral orifice, located in the vestibule in the labia minora between the clitoris and the Vaginal orifice. Female urethra transports urine from the bladder to outside at the time of urination.
- b. Male Urethra: It is 20cm long, S-shaped, follows the line of the penis. It transports urine during (urination) and semen (during ejaculation) to outside. Male urethra consists of the following three regions

Functions

Urethra performs the following functions:

- 1) It is the passageway through which urine is expelled out of the body.
- 2) In males, it is also the passageway through which semen is ejaculated.

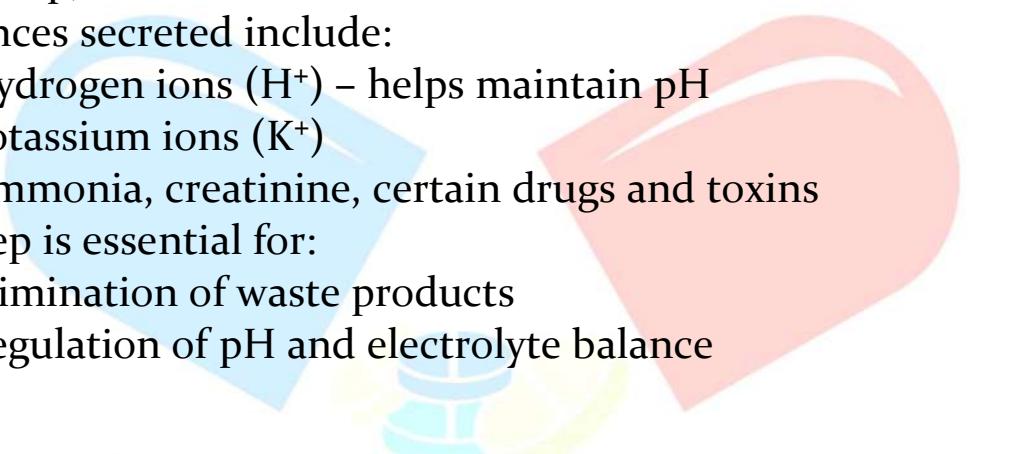
URINE FORMATION

→ The process of urine formation takes place in the nephrons, the structural and functional units of the kidneys. It occurs through three major steps:

1. Glomerular Filtration (Ultrafiltration)

- This is the first step in urine formation.
- It occurs in the renal corpuscle, specifically in the glomerulus and Bowman's capsule.
- High blood pressure in glomerular capillaries forces water and small solutes (like glucose, salts, amino acids, urea) through the filtration membrane into the Bowman's capsule.
- The filtered fluid is called glomerular filtrate.
- Blood cells and plasma proteins are too large to pass through, so they remain in the blood.

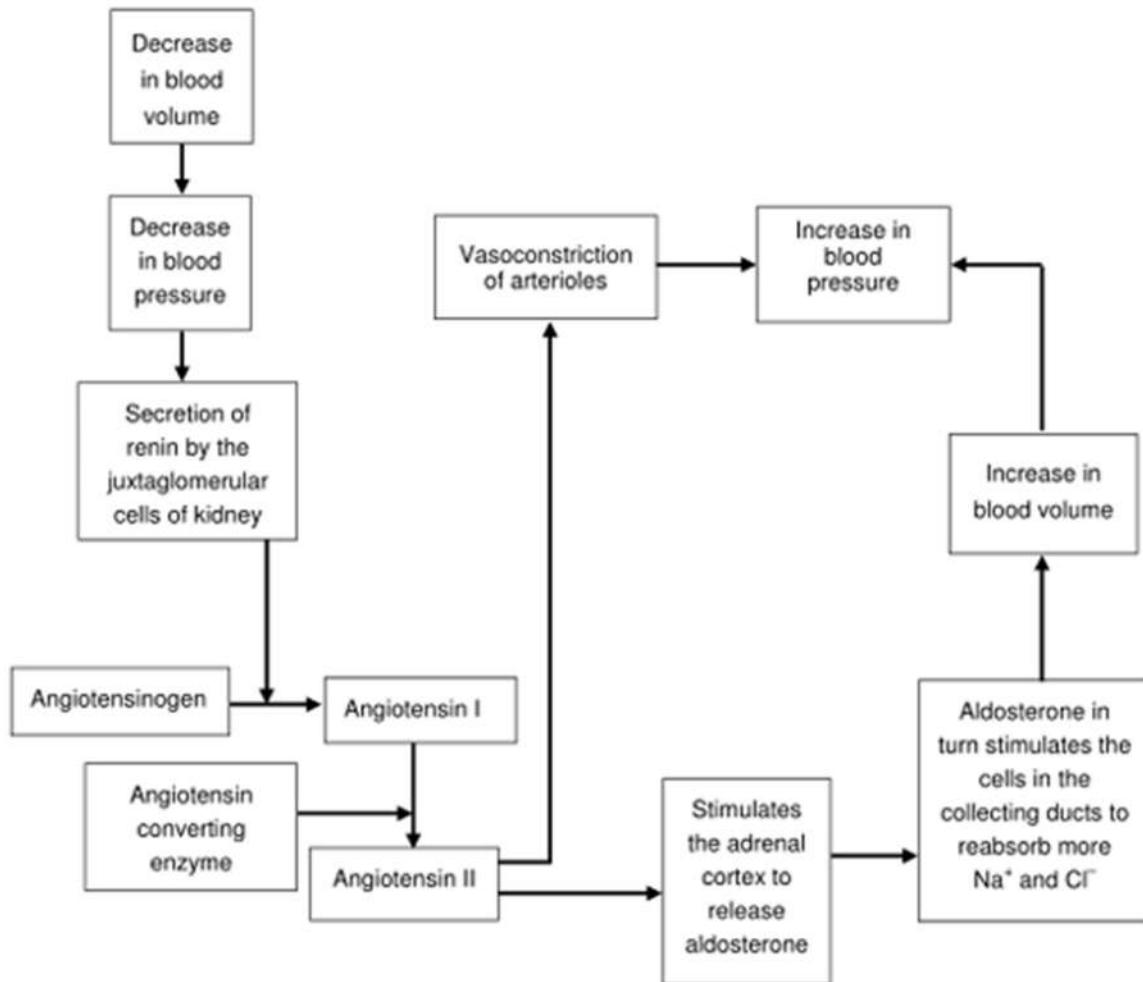
➤ Average filtration rate: ~125 mL/min (180 liters/day), but most of this is reabsorbed


2. Tubular Reabsorption

- The second step occurs in the renal tubule (mainly proximal convoluted tubule, loop of Henle, distal tubule, and collecting duct).
- About 99% of the glomerular filtrate is reabsorbed back into the bloodstream.
- Substances like:
 - Glucose, amino acids, sodium, potassium, calcium, chloride ions
 - Water (by osmosis)
 - Bicarbonate ions (for acid-base balance)
- These substances are actively or passively transported from the tubules into the peritubular capillaries.

- This step ensures valuable nutrients and water are conserved and returned to the body.

3. Tubular Secretion


- The final step of urine formation.
- Occurs mostly in the distal convoluted tubule and collecting duct.
- In this step, substances are secreted from blood into the renal tubule.
- Substances secreted include:
 - Hydrogen ions (H^+) – helps maintain pH
 - Potassium ions (K^+)
 - Ammonia, creatinine, certain drugs and toxins
- This step is essential for:
 - Elimination of waste products
 - Regulation of pH and electrolyte balance

FDSPharmacy
Learn and Educate

RENIN ANGIOTENSIN ALDOSTERONE SYSTEM

- Dehydration, Na deficiency, or haemorrhage leads to decrease in blood volume.
- Decrease in blood volume decreases the blood pressure. This decreased blood pressure leads to decreased stretching of the walls of the afferent arterioles. This leads to secretion of the enzyme renin by the juxtaglomerular cells of kidney into the blood.
- Renin converts a peptide, angiotensinogen (which is synthesized by liver) to angiotensin I
- Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II.
- Angiotensin II stimulates the adrenal cortex to release aldosterone, a hormone that in turn stimulates the cells in the collecting ducts to reabsorb more Na' and Cl and secrete more K+.
- Angiotensin II increases reabsorption of Na", Cl and water in the proximal convoluted tubule, which causes an increase in blood volume and blood pressure.
- Angiotensin II causes vasoconstriction of arterioles which increases blood pressure and thus helps to raise blood pressure to normal

Learn and Educate