

WELCOME

TO

This is an Education Platform

We Provide PDF Notes for Pharmacy Students

Web Site <http://www.fdspharmacy.in/>

You tube <https://www.youtube.com/c/FDSpharmacy>

Telegram <https://t.me/Fdspharmacy>

App <https://play.google.com/store/apps/details?id=com.FDSPharmacyMedia.FDSPharmacy>

E-mail fdsparmacyinfo@gmail.com

Bachelor of Pharmacy Physical Pharmaceutics II

NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

All Unit in One PDF

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmacology I

NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

All Unit in One PDF

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmacognosy and Phytochemistry I

NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

All Unit in One PDF

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Organic Chemistry III

NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

All Unit in One PDF

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Medicinal Chemistry I

NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

All Unit in One PDF

Visit our Website
WWW.fdspharmacy.in

FDPharmacy

.....

D.Pharma B.Pharma

- 👉 PDF Notes
- 👉 Practical Manual
- 👉 Important Questions
- 👉 Assignment etc

Download Now

ANDROID APP ON

Google play

www.fdpharmacy.in

PHARMACEUTICAL ORGANIC CHEMISTRY – III

UNIT 3

TOPIC :

- **Heterocyclic compounds :**

Nomenclature and classification

Synthesis, reactions and medicinal uses of following compounds/derivatives

Pyrrole, Furan, and Thiophene

Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene

FDSPharmacy
Learn and Educate

Heterocyclic Compounds

- Heterocyclic compounds are organic compounds that contain a ring (cyclic) structure composed of at least one atom other than carbon within the ring.
- The non-carbon atoms present in the ring are called heteroatoms.
- Common heteroatoms include nitrogen (N), oxygen (O), and sulfur (S).
- These compounds are widely present in natural products, pharmaceuticals, agrochemicals, dyes, and biomolecules (like nucleic acids, hemoglobin, and vitamins).

Importance

- Found in biological molecules (DNA, RNA, porphyrins, vitamins, alkaloids).
- Many drugs (e.g., pyridine derivatives, furan, thiophene, imidazole, quinoline) are heterocyclic in nature.
- Play a key role in medicinal chemistry due to their chemical reactivity and biological activity.

Classification of Heterocyclic Compounds

Heterocyclic compounds can be classified on different bases:

1. Based on Ring Size
2. Based on Aromaticity
3. Based on Number of Rings
4. Based on Type of Heteroatom

(Based on Ring Size)

- Heterocyclic compounds are classified according to the number of atoms forming the ring and the type of heteroatoms present.

1. Three-Membered Heterocyclic Compounds

These are **three-membered ring compounds** containing **one or two heteroatoms**.

(a) With One Heteroatom

- **Aziridine (NH)** → contains nitrogen atom.
- **Oxirane (Ethylene oxide)** → contains oxygen atom.
- **Thiirane** → contains sulfur atom.

(b) With Two Heteroatoms

- **Diaziridine (N-N)** → contains two nitrogen atoms.
- **Dioxirane (O-O)** → contains two oxygen atoms.
- **Azirine** → unsaturated 3-membered ring with N.

Example Structures:

- Aziridine (C_2H_4NH)
- Oxirane (C_2H_4O)
- Diaziridine ($C_2H_4N_2$)

2. Four-Membered Heterocyclic Compounds

These are four-membered ring compounds with one or more heteroatoms.

(a) With One Heteroatom

- **Azetidine (NH)** → 4-membered ring with nitrogen.
- **Oxetane (O)** → 4-membered ring with oxygen.
- **Thietane (S)** → 4-membered ring with sulfur.

(b) With More Than One Heteroatom

- **Diazetidine (N–N)**
- **Oxazetidine (O + N)**
- **Thiazetidine (S + N)**

Examples are less stable due to ring strain.

3. Five-Membered Heterocyclic Compounds

These are five-membered rings with one or more heteroatoms.

(a) With One Heteroatom (Aromatic)

- **Pyrrole (NH)**
- **Furan (O)**
- **Thiophene (S)**

(b) With Two Heteroatoms (Aromatic)

- **Imidazole (2N)**
- **Oxazole (O + N)**
- **Thiazole (S + N)**

Importance: Many of these are aromatic and widely used in medicinal chemistry.

4. Six-Membered Heterocyclic Compounds

(a) With One Heteroatom

- **Pyridine (N)**
- **Pyran (O)**
- **Thiopyran (S)**

(b) With More Than One Heteroatom

- **Diazines (two N atoms):**
 - **Pyridazine**
 - **Pyrimidine**
 - **Pyrazine**
- **Other examples:** Triazines, Dioxanes.

Examples in biology: Pyrimidines are found in nucleic acids (Cytosine, Thymine, Uracil).

5. Seven-Membered Heterocyclic Compounds

These are seven-membered rings with one or more heteroatoms.

(a) With One Heteroatom

- **Azepane (N)**
- **Oxepane (O)**
- **Thiepane (S)**

(b) With More Than One Heteroatom

- **Diazepane (2N atoms)**
- **Thiazepane (S + N)**
- **Oxazepane (O + N)**

Some are used as **drug scaffolds** (e.g., benzodiazepines).

(Based on Aromaticity)

- Heterocyclic compounds can be divided into aromatic and non-aromatic based on the presence or absence of aromatic character.

1. Aromatic Heterocyclic Compounds

- These are heterocyclic compounds that obey Huckel's Rule ($4n + 2 \pi$ -electrons) for aromaticity.
- They contain a planar cyclic conjugated π -electron system that provides stability.
- Aromatic heterocycles are often highly stable and widely present in natural products, drugs, and biomolecules.

Examples

- **Pyridine** (C_5H_5N) → six-membered aromatic heterocycle with one nitrogen.
- **Pyrrole** (C_4H_5N) → five-membered aromatic heterocycle with nitrogen.
- **Furan** (C_4H_4O) → five-membered aromatic heterocycle with oxygen.
- **Thiophene** (C_4H_4S) → five-membered aromatic heterocycle with sulfur.
- **Imidazole, Oxazole, Thiazole** → five-membered with two heteroatoms.

2. Non-Aromatic Heterocyclic Compounds

- These heterocycles do not obey Huckel's Rule ($4n + 2$ rule).
- They lack complete delocalization of π -electrons.
- They are generally saturated or partially saturated rings.

Examples

- **Tetrahydrofuran** (THF, C_4H_8O) → saturated five-membered ring with oxygen.
- **Piperidine** ($C_5H_{11}N$) → saturated six-membered ring with nitrogen.
- **Morpholine** (O + N in a six-membered ring).
- **Tetrahydropyran** ($C_5H_{10}O$).

(Based on Number of Rings)

Heterocyclic compounds can also be classified depending on the **number of rings** in their structure. They may have a single heteroatom-containing ring or multiple fused heteroatom-containing rings.

1. Monocyclic Heterocyclic Compounds

- Compounds that contain only one heteroatom-containing ring in their structure.
- They may have one or more heteroatoms in that single ring.

Examples

- Pyridine (C_5H_5N) → six-membered ring with one nitrogen atom.
- Furan (C_4H_4O) → five-membered ring with oxygen atom.
- Pyrrole (C_4H_5N) → five-membered ring with nitrogen atom.
- Thiophene (C_4H_4S) → five-membered ring with sulfur atom.

Monocyclic heterocycles are common in drugs and biomolecules.

2. Bicyclic or Polycyclic Heterocyclic Compounds

- Compounds that contain two or more fused rings, where at least one of the rings contains a heteroatom.
- Fusion may occur between heterocyclic–heterocyclic or heterocyclic–carbocyclic rings.

Examples

- Quinoline (C_9H_7N) → fused benzene + pyridine ring.
- Isoquinoline (C_9H_7N) → fused benzene + pyridine (different fusion).
- Indole (C_8H_7N) → fused benzene + pyrrole ring.
- Purine ($C_5H_4N_4$) → fused pyrimidine + imidazole rings.
- Acridine ($C_{13}H_9N$) → three fused rings with nitrogen.

These heterocycles are very important in medicinal chemistry:

- Purines & Pyrimidines → form nucleic acids (DNA & RNA).
- Quinoline derivatives → used as antimalarials (e.g., chloroquine).
- Indole derivatives → found in serotonin and tryptophan.

Based on Type of Heteroatom

- **Nitrogen heterocycles:** Pyridine, Pyrrole, Imidazole, Quinoline.
- **Oxygen heterocycles:** Furan, Pyran, Dioxane.
- **Sulfur heterocycles:** Thiophene, Thiazole, Benzothiazole.
- **Mixed heteroatom heterocycles:** Oxazole (O + N), Thiazole (S + N).

Nomenclature of Heterocyclic Compounds

- Heterocyclic compounds are named using different systems, but the Hantzsch–Widman system is the most widely accepted and is also recommended by IUPAC. It provides a systematic way of naming both simple and complex monocyclic heterocycles.

Hantzsch–Widman Nomenclature

This system names heterocyclic compounds based on:

1. Type of heteroatom(s) present.
2. Size of the ring.
3. Saturation or unsaturation of the ring.

The general formula is:

Prefix (heteroatom) + Stem (ring size) + Suffix (saturation/unsaturation)

1. Prefix

- The prefix denotes the type of heteroatom present in the ring.
- Common prefixes:

Heteroatom	Prefix
Oxygen (O)	Oxa-
Sulfur (S)	Thia-
Nitrogen (N)	Aza-
Selenium (Se)	Sela-
Tellurium (Te)	Tellura-

2. Stem (Ring Size)

- The stem indicates the **number of atoms in the ring** (ring size).
- Common stems:

Ring Size	Stem (Unsaturated)	Stem (Saturated)
3	-ir-	-irane
4	-et-	-etane
5	-ol-	-olane
6	-in-	-inane
7	-ep-	-epane
8	-oc-	-ocane

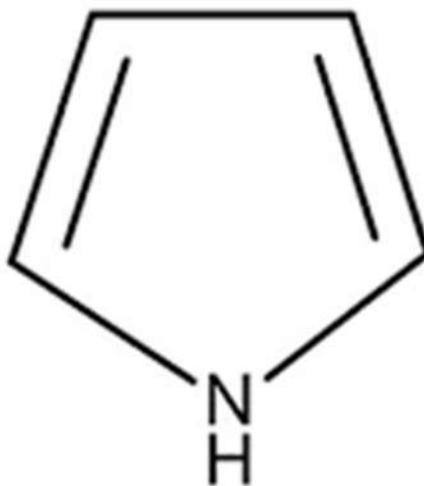
3. Suffix (Saturation/Unsaturation)

- The suffix specifies whether the ring is saturated or unsaturated:
 - ane** → saturated ring.
 - ine / -ole** → unsaturated ring (aromatic or conjugated).

Examples

1. Oxirane (C_2H_4O)

- Three-membered ring with oxygen (oxa-) + 3-membered ring (-ir-) + saturated (-ane).
- Name: Oxirane.

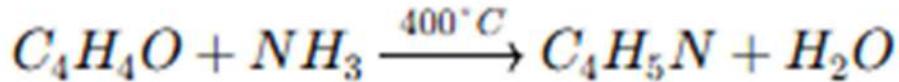

2. Aziridine (C_2H_5N)

- Three-membered ring with nitrogen (aza-) + 3-membered ring (-ir-) + saturated (-ane).
- Name: Aziridine.

Pyrrole

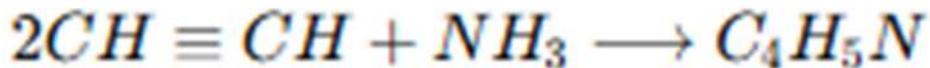
- Pyrrole is a five-membered aromatic heterocyclic compound with molecular formula C_4H_5N .
- It is a colorless, volatile liquid that darkens upon exposure to air.
- Pyrrole is considered one of the most important five-membered heterocycles.
- It naturally occurs in many biomolecules such as:
 - Hemoglobin (heme group contains pyrrole rings)
 - Chlorophyll
 - Alkaloids
 - Vitamin B₁₂

Structure and Resonance

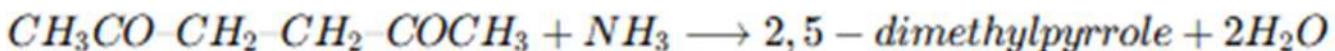


- Pyrrole consists of a five-membered ring with one nitrogen atom.
- The nitrogen atom contributes its lone pair of electrons to the aromatic π -system.
- Thus, pyrrole has a total of 6 π -electrons (4 from double bonds + 2 from nitrogen lone pair) \rightarrow satisfies Hückel's rule.
- Resonance leads to delocalization of electrons, which gives pyrrole its aromatic character.

Synthesis of Pyrrole (Methods of Preparation)


1. Industrial Method

- Furan when treated with ammonia at 400 °C under pressure forms pyrrole.


2. From Acetylene

- A mixture of acetylene and ammonia is passed through a red hot tube to yield pyrrole.

3. Paal-Knorr Synthesis

- 1,4-diketone reacts with ammonia or primary amine to yield pyrrole derivatives.

4. Hantzsch Pyrrole Synthesis

- β-ketoester (ethyl acetoacetate) reacts with α-chloro ketone in presence of ammonia to give substituted pyrrole.

5. From Succinimide

- Dry distillation of succinimide with zinc dust gives pyrrole.

Chemical Reactions of Pyrrole

Due to electron-rich nature, pyrrole undergoes reactions mainly at the C-2 position.

1. Electrophilic Substitution Reactions

- Pyrrole is much more reactive than benzene towards electrophiles.
- Halogenation:
Pyrrole + Br₂ → 2-Bromopyrrole.
- Nitration:
Pyrrole + HNO₃ (acetic anhydride) → 2-Nitropyrrole.
- Sulfonation:
Pyrrole + fuming H₂SO₄ → 2-Pyrrole sulfonic acid.

2. Reduction

- Pyrrole is reduced by H₂/Ni at high temperature to form pyrrolidine (saturated heterocycle).

3. Reimer-Tiemann Reaction

- Pyrrole reacts with chloroform (CHCl₃) + KOH to give 2-formylpyrrole.

4. Oxidation

- Pyrrole is oxidized with chromium trioxide (CrO₃) in H₂SO₄ to form maleimide derivatives such as pyrrole-2,5-dione.

Medicinal Uses of Pyrrole

1. Building Block in Drugs

- Atorvastatin (Lipitor) – cholesterol-lowering drug.
- Tolmetin – NSAID (anti-inflammatory drug).
- Sunitinib – anticancer drug.

2. Antimicrobial Agents

- Pyrrole derivatives show **antibacterial, antifungal, and antiviral activities**.

3. Anti-inflammatory and Analgesic

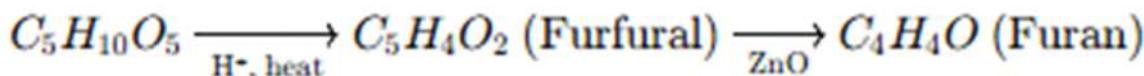
- Pyrrole-based compounds reduce inflammation and pain.

4. Biological Significance

- **Heme (hemoglobin, cytochromes)** → contains pyrrole units in the porphyrin ring.
- **Chlorophyll** → pyrrole ring system in plants.
- **Vitamin B₁₂** → corrin ring contains pyrrole subunits.

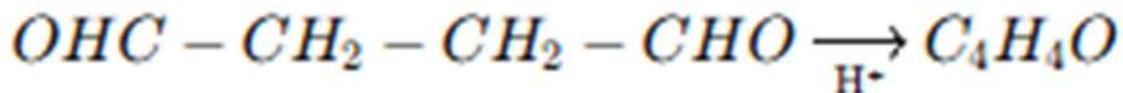
Furan

- Furan is a five-membered aromatic heterocyclic compound consisting of four carbon atoms and one oxygen atom.
- Molecular formula: C_4H_4O
- It is a colorless, volatile, flammable liquid with a boiling point around $31^{\circ}C$.
- It has a characteristic chloroform-like odor.
- Furan is considered important because it forms the basis of many natural products, pharmaceuticals, and synthetic intermediates.
- Its oxygen heteroatom provides lone pair electrons that contribute to resonance and aromatic stabilization.


Resonance in Furan

- Furan shows resonance due to delocalization of **π -electrons** across the five-membered ring.
- Out of two lone pairs of oxygen, **one lone pair participates in resonance**, contributing **two electrons** to the aromatic sextet (Hückel's rule: $4n+2 = 6$).
- This makes furan **aromatic and planar**.
- Resonance structures explain its relative stability and reactivity.

Synthesis of Furan (Methods of Preparation)


1. Industrial Method (from Xylose / Pentose sugars)

- When pentose sugars (like xylose) are heated in the presence of mineral acids, they undergo dehydration to form furfural.
- Furfural upon decarbonylation gives furan.

2. From 1,4-Diketones (Paal-Knorr Furan Synthesis)

- 1,4-diketone on dehydration in acidic medium yields furan.

3. From Furfural

- Furfural is decarbonylated with palladium catalyst to produce furan.

4. Laboratory Method (from Alcohols)

- Butane-1,4-diol on dehydration with strong acids yields furan.

Chemical Reactions of Furan

Like pyrrole, furan undergoes electrophilic substitution reactions, mainly at C-2 position due to greater electron density.

1. Halogenation

1. Nitration

- With acetyl nitrate, gives 2-nitrofuran.

2. Sulfonation

- With fuming H_2SO_4 → furan-2-sulfonic acid.

3. Friedel-Crafts Acylation

- With acyl chlorides in the presence of $AlCl_3$ → 2-acylfuran.

4. Reduction

- Furan + H_2 (Ni catalyst) → tetrahydrofuran (THF).
- THF is an important solvent in organic chemistry.

5. Oxidation

- Furan gets oxidized to maleic anhydride using chromium trioxide.

Medicinal Uses of Furan and its Derivatives

1. Antibacterial and Antifungal Agents

- Nitrofurans (like nitrofurantoin, furazolidone) are widely used as urinary tract antiseptics.

2. Anticancer Agents

- Some furan derivatives show cytotoxic activity and are used in anticancer therapy.

3. Anti-inflammatory Agents

- Furan derivatives are components in NSAIDs.

4. Solvent Use (THF)

- Tetrahydrofuran is used as a polar aprotic solvent in drug formulations.

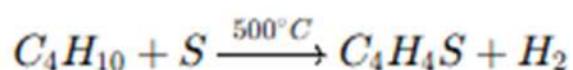
5. Building Block in Natural Products

- Furan units are present in many alkaloids, vitamins (Vit. B₁ = thiamine), and antibiotics.

FDSPharmacy
Learn and Educate

Thiophene

- Thiophene is a five-membered aromatic heterocyclic compound containing four carbon atoms and one sulfur atom.
- Molecular formula: C_4H_4S
- It is a colorless liquid with a benzene-like odor and a boiling point of about $84^{\circ}C$.
- Thiophene resembles benzene in its properties and is often found as an impurity in coal tar and crude oil.
- Its aromatic character is due to delocalization of π -electrons with sulfur contributing a lone pair.


Resonance in Thiophene

- The sulfur atom has two lone pairs of electrons; one lone pair participates in resonance with the π -electron cloud of the ring.
- Thus, thiophene has 6 π -electrons (following Hückel's rule: $4n+2$).
- This gives thiophene aromatic stability.
- Resonance structures show delocalization of electrons across the ring, similar to benzene.

Synthesis of Thiophene (Methods of Preparation)


1. From Butane

- When butane is passed with sulfur at high temperature ($500^{\circ}C$), thiophene is formed.

2. Paal-Knorr Synthesis

- 1,4-diketone reacts with phosphorus pentasulfide (P_2S_5) to yield thiophene.

3. From Sodium Succinate and P_2S_5

- Sodium succinate when heated with P_2S_5 undergoes cyclization to give thiophene.

4. Laboratory Method

- From furan by replacement of oxygen atom with sulfur (using Lawesson's reagent).

Chemical Reactions of Thiophene

Since thiophene is aromatic, it undergoes electrophilic substitution reactions, mostly at C-2 position due to greater resonance stabilization.

1. Halogenation

1. Nitration

- With acetyl nitrate \rightarrow 2-nitrothiophene.

2. Sulfonation

- With fuming $H_2SO_4 \rightarrow$ thiophene-2-sulfonic acid.

3. Friedel-Crafts Acylation/Alkylation

- With acyl/alkyl halides in presence of $AlCl_3 \rightarrow$ substituted thiophenes.

4. Reduction

- With $H_2/Ni \rightarrow$ tetrahydrothiophene, a useful solvent.

5. Oxidation

- Thiophene oxidizes to give sulfur dioxide + maleic acid.

Medicinal Uses of Thiophene and its Derivatives

1. Anti-inflammatory Drugs

- Tiaprofenic acid (NSAID) is a thiophene derivative used to reduce inflammation and pain.

2. Antihypertensive Agents

- Ticlopidine (platelet aggregation inhibitor) contains a thiophene ring.

3. Anticonvulsants

- Some thiophene derivatives are used in treatment of epilepsy.

4. Antimicrobial Agents

- Substituted thiophenes exhibit antibacterial and antifungal activity.

5. Building Block in Drug Design

- The thiophene ring acts as a bioisostere of benzene, used in designing more potent and soluble drugs.

FDSPharmacy
Learn and Educate