

WELCOME

TO

This is an Education Platform

We Provide PDF Notes for Pharmacy Students

Web Site <http://www.fdspharmacy.in/>

You tube <https://www.youtube.com/c/FDSpharmacy>

Telegram <https://t.me/Fdspharmacy>

App <https://play.google.com/store/apps/details?id=com.FDSPharmacyMedia.FDSPharmacy>

E-mail fdsparmacyinfo@gmail.com

Bachelor of Pharmacy Physical Pharmaceutics I

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 in
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Organic Chemistry II

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 in
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Engineering

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 in
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Organic Chemistry II

Bachelor of Pharmacy Pharmaceutical Microbiology

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 in
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

FDPharmacy

.....

D.Pharma B.Pharma

- 👉 PDF Notes
- 👉 Practical Manual
- 👉 Important Questions
- 👉 Assignment etc

Download Now

ANDROID APP ON

Google play

www.fdpharmacy.in

PHARMACEUTICAL ORGANIC CHEMISTRY - II

UNIT 4

TOPIC :

- **Polynuclear hydrocarbons:**
 - a. Synthesis, reactions
 - b. Structure and medicinal uses of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives

Polynuclear Hydrocarbons

- Polynuclear hydrocarbons belong to the class of aromatic hydrocarbons that contain multiple aromatic rings made up entirely of carbon and hydrogen atoms.
- These rings may be either fused together (sharing common carbon atoms) or isolated (separated by linkages).
- They are also known as Polycyclic Aromatic Hydrocarbons (PAHs).

Types of Polynuclear Hydrocarbons

Polynuclear hydrocarbons are mainly divided into two types:

① Isolated Ring Compounds

- In these compounds, aromatic rings are not directly connected to each other.
- The rings are linked via a non-aromatic chain or a single atom.
- These compounds do not share any carbon atoms between the rings.

Examples:

- Diphenyl methane
(Two benzene rings connected through a $-\text{CH}_2-$ group)
- Triphenyl methane
(Three benzene rings connected to a central carbon)

Note: These are less reactive in electrophilic substitution compared to fused ring systems.

② Fused Ring Compounds

- In these compounds, two or more benzene rings are fused, meaning they share one or more carbon atoms.
- The aromatic rings are directly joined and form a continuous π -system.
- These are more stable and highly aromatic in nature.

Examples:

- Naphthalene – 2 fused benzene rings
- Anthracene – 3 benzene rings in a straight line
- Phenanthrene – 3 benzene rings in an angular arrangement

These compounds are more reactive toward electrophilic substitution at specific positions.

Synthesis of Polynuclear Hydrocarbons

1. Naphthalene

a) *From Coal Tar:*

- Naphthalene is a major constituent of coal tar (5-10%) and can be separated by fractional distillation.

b) *Haworth Synthesis:*

- Used for laboratory synthesis.
- Involves Friedel-Crafts acylation and reduction steps.

2. Anthracene

a) *From Coal Tar:*

- Present in the green oil fraction of coal tar.
- Separated by crystallization.

b) *Synthetic Method:*

- Cyclodehydration of o-benzylbenzoic acid gives anthracene.

3. Phenanthrene

- Also obtained from coal tar.
- Can be synthesized by Bardhan-Sengupta synthesis.

Reactions of Polynuclear Hydrocarbons

1. Electrophilic Substitution Reactions (EAS):

Like benzene, PNHs undergo substitution reactions rather than addition.

Naphthalene:

- Reacts faster than benzene.
- Electrophile enters α -position (1-position) due to resonance stability.
- Reactions:
 - Nitration: Forms 1-nitronaphthalene
 - Sulphonation: Forms 1-naphthalenesulphonic acid
 - Halogenation: Forms 1-halogenonaphthalene

Anthracene:

- Reactivity is high at 9,10-positions due to stabilization of carbocation.
- Reactions:
 - Nitration: Gives 9-nitroanthracene
 - Addition reactions at 9,10 positions forming dihydro derivatives

Phenanthrene:

- Reacts at 9-position.
- Reactions:
 - Nitration: Forms 9-nitrophenanthrene
 - Oxidation: Yields phenanthrenequinone

2. Oxidation Reactions:

Naphthalene:

- Oxidized with KMnO_4 → forms phthalic acid

Anthracene:

- Oxidized at 9,10 positions → forms anthraquinone

Phenanthrene:

- Oxidation gives phenanthraquinone

3. Reduction Reactions:

Naphthalene:

- With Na in ethanol → forms tetralin (1,2,3,4-tetrahydronaphthalene)

Anthracene:

- With reducing agents → forms 9,10-dihydroanthracene

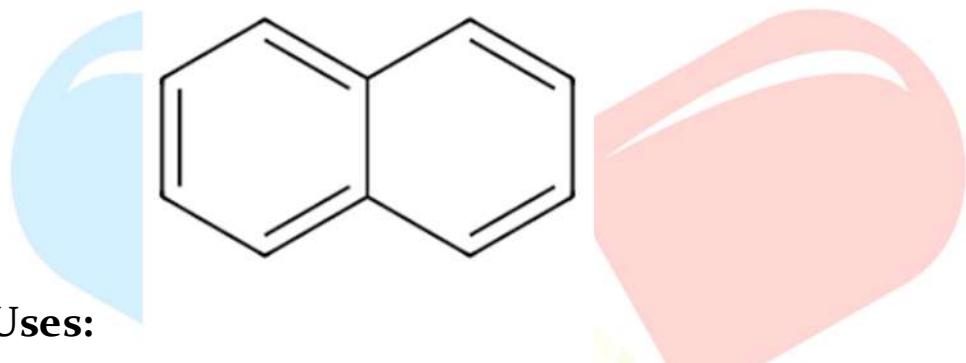
Phenanthrene:

- Forms dihydronaphthalene on reduction

4. Addition Reactions (less common):

- Reactivity is less due to aromatic stabilization.
- Under pressure or with catalysts, hydrogenation gives partially saturated compounds.

5. Other Important Reactions:

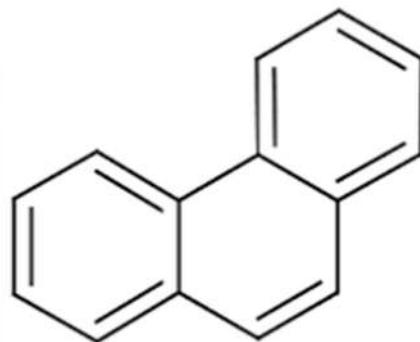

- **Friedel-Crafts Acylation/Alkylation:**
 - Can occur in PNHs, especially in α -positions of naphthalene.
- **Diels-Alder Reaction:**
 - Anthracene acts as a diene and reacts at 9,10 positions with dienophiles.

Naphthalene

Structure:

- Naphthalene has a fused system of two benzene rings.
- Molecular formula: $C_{10}H_8$

Medicinal Uses:


- ✓ **Antiseptic and insecticide** : Used in mothballs to repel insects.
- ✓ **Antifungal agent** : Used in some formulations for skin infections.
- ✓ **Intermediate in drug synthesis** : Used to prepare naphthylamines, which are precursors to antihistamines, antimalarials, and dyes.

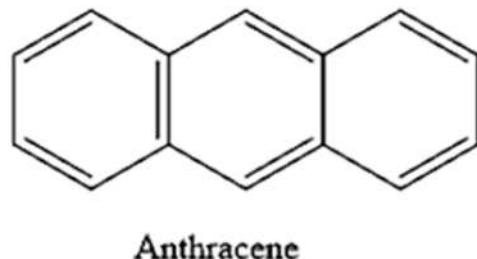
Learn and Educate

Phenanthrene

Structure:

- Phenanthrene has a three-ring angular fused structure.
- Molecular formula: $C_{14}H_{10}$

Medicinal Uses:


- ✓ **Backbone structure of steroids:** Phenanthrene nucleus is found in morphine, steroids, and cardiac glycosides.
- ✓ Used in synthesis of drugs with anti-inflammatory and antitumor activity.
- ✓ Precursor to phenanthroline, used in complexation and antimicrobial studies.

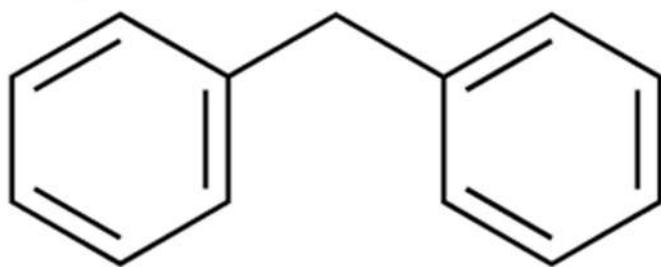
Learn and Educate

Anthracene

Structure:

- Anthracene has a linear arrangement of three benzene rings.
- Molecular formula: $C_{14}H_{10}$

Medicinal Uses:

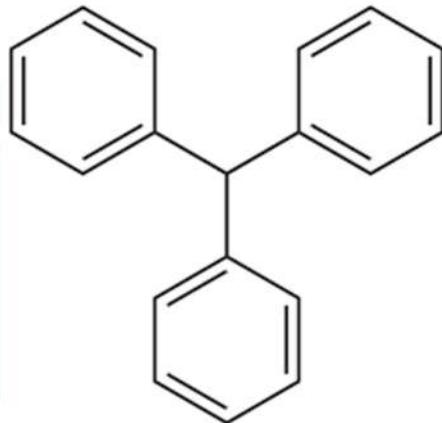

- ✓ Used in the manufacture of anthraquinone derivatives, like:
 - Aloe-emodin
 - Chrysophanol
- ✓ These are active constituents in laxatives like senna and rhubarb.
- ✓ Some derivatives show antiviral and anticancer activities.

Learn and Educate

Diphenylmethane

Structure:

- Consists of two benzene rings connected through a CH_2 (methylene) bridge.
- Molecular formula: $\text{C}_{13}\text{H}_{12}$


Medicinal Uses:

- ✓ Backbone of several antihistamines like:
 - Diphenhydramine (Benadryl)
- ✓ Found in:
 - Antiallergics
 - Antitussives
 - Sedatives
- ✓ Diphenylmethane derivatives are also used as antiemetics (e.g., meclizine).

Triphenylmethane

Structure:

- Contains three phenyl rings attached to a central carbon atom (C).
- Molecular formula: $C_{19}H_{16}$

Medicinal Uses:

- ✓ Parent structure for triphenylmethane dyes:
 - Malachite green
 - Crystal violet
- ✓ These dyes possess antibacterial and antifungal properties.
- ✓ Used as:
 - Topical antiseptics
 - Biological stains in histopathology and microbiology.