

WELCOME

TO

This is an Education Platform

We Provide PDF Notes for Pharmacy Students

Web Site <http://www.fdspharmacy.in/>

You tube <https://www.youtube.com/c/FDSpharmacy>

Telegram <https://t.me/Fdspharmacy>

App <https://play.google.com/store/apps/details?id=com.FDSPharmacyMedia.FDSPharmacy>

E-mail fdsparmacyinfo@gmail.com

Bachelor of Pharmacy Human Anatomy and Physiology II

NOTES

- ✓ Unit 1 **All Unit**
- ✓ Unit 2 **in**
- ✓ Unit 3 **One PDF**
- ✓ Unit 4
- ✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Environmental Sciences

NOTES

- ✓ Unit 1 **All Unit**
- ✓ Unit 2 **in**
- ✓ Unit 3 **One PDF**
- ✓ Unit 4
- ✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Organic Chemistry I

NOTES

- ✓ Unit 1 **All Unit**
- ✓ Unit 2 **in**
- ✓ Unit 3 **One PDF**
- ✓ Unit 4
- ✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Computer Applications in Pharmacy

NOTES

- ✓ Unit 1 **All Unit**
- ✓ Unit 2 **in**
- ✓ Unit 3 **One PDF**
- ✓ Unit 4
- ✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pathophysiology

NOTES

- ✓ Unit 1 **All Unit**
- ✓ Unit 2 **in**
- ✓ Unit 3 **One PDF**
- ✓ Unit 4
- ✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Biochemistry

NOTES

- ✓ Unit 1 **All Unit**
- ✓ Unit 2 **in**
- ✓ Unit 3 **One PDF**
- ✓ Unit 4
- ✓ Unit 5

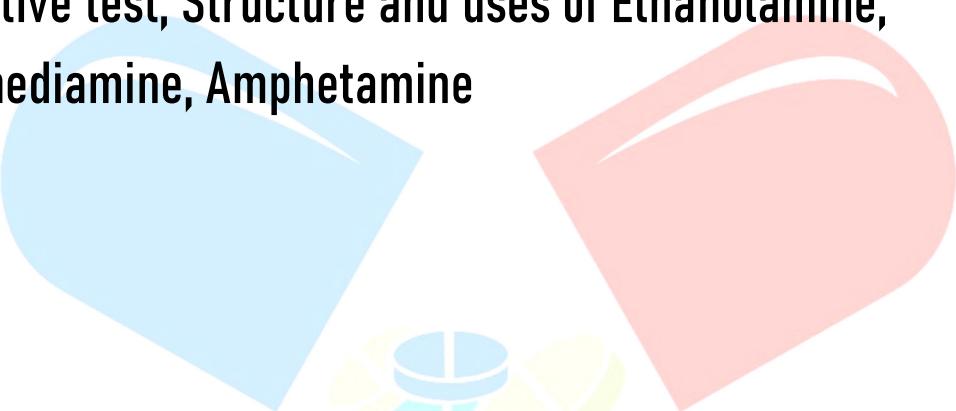
Visit our Website
WWW.fdspharmacy.in

D.Pharma B.Pharma

- 👉 PDF Notes
- 👉 Practical Manual
- 👉 Important Questions
- 👉 Assignment etc

Download Now

ANDROID APP ON
Google play


www.fdpharmacy.in

PHARMACEUTICAL ORGANIC CHEMISTRY – I

UNIT 5

TOPIC :

- **Aliphatic amines*** - Basicity, effect of substituent on Basicity.
Qualitative test, Structure and uses of Ethanolamine,
Ethylenediamine, Amphetamine

FDSPharmacy
Learn and Educate

Aliphatic Amines

- Amines are organic compounds derived from ammonia (NH_3) by replacing one or more hydrogen atoms with alkyl or aryl groups.
- Aliphatic amines contain only alkyl groups attached to the nitrogen atom.

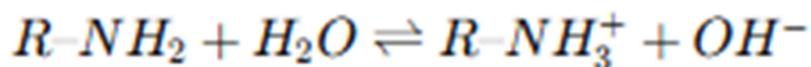
General Formula

- Primary (1°) amine: $\text{R}-\text{NH}_2$
- Secondary (2°) amine: R_2-NH
- Tertiary (3°) amine: R_3-N
(where R = alkyl group)

Examples

- Methylamine: CH_3NH_2 (1°)
- Dimethylamine: $(\text{CH}_3)_2\text{NH}$ (2°)
- Trimethylamine: $(\text{CH}_3)_3\text{N}$ (3°)

Basicity of Aliphatic Amines


Basicity

Basicity is the ability of a compound to **accept a proton (H^+)**.

- In amines, the nitrogen atom has a **lone pair of electrons**, which can accept a proton.
- Thus, amines act as **Lewis bases**.

Aliphatic Amines

- The **lone pair on nitrogen** is readily available for protonation.
- In aqueous solution, they form **alkylammonium ions**:

Effect of Substituents on Basicity

→ Substituents can affect basicity through inductive and solvation effects.

1. Inductive Effect (-I and +I effects)

- **Electron-donating groups (EDG)** like alkyl groups push electrons toward nitrogen via **+I effect**, increasing electron density and **increasing basicity**.
- More alkyl groups → greater +I effect → stronger base.

Order in gas phase:

$3^{\circ}\text{amine} > 2^{\circ}\text{amine} > 1^{\circ}\text{amine} > \text{NH}_3$

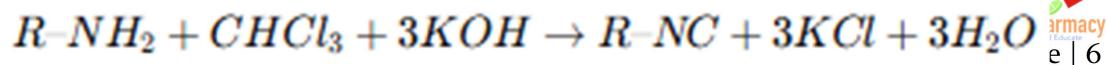
2. Solvation Effect in Aqueous Solution

- In water, **hydrogen bonding** stabilizes the protonated amine.
- Primary amines are better solvated than tertiary, so:

Order in water (aqueous phase):

$2^{\circ}\text{amine} > 1^{\circ}\text{amine} > 3^{\circ}\text{amine} > \text{NH}_3$

Qualitative Tests for Aliphatic Amines

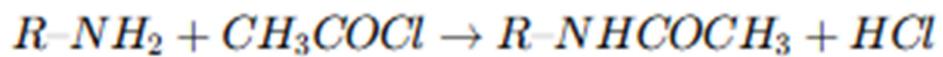

1. Litmus Test

- **Test:** Add a few drops of the amine to moist **red litmus paper**.
- **Observation:** The red litmus turns **blue**.
- **Inference:** Confirms **basic nature** of the amine.

2. Carbylamine Test (for Primary Amines only)

Also called Isocyanide Test

- **Reagents:** Chloroform (CHCl_3) + alcoholic KOH
- **Procedure:** Heat the primary amine with CHCl_3 and alcoholic KOH.
- **Reaction:**


Observation: Formation of foul-smelling isocyanide (R-NC).

Inference: Positive test indicates presence of a primary aliphatic amine.

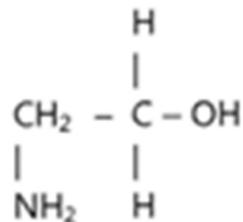
3. Reaction with Acyl Chlorides

Used for 1° and 2° amines

- **Reagent:** Acid chloride (e.g., acetyl chloride)
- **Reaction with 1° Amine:**

Observation: Formation of white precipitate of amide.

Inference: Confirms presence of primary or secondary amine


FDSPharmacy
Learn and Educate

Ethanolamine

- Chemical Formula: C₂H₇NO
- IUPAC Name: 2-Aminoethanol
- Common Name: Ethanolamine
- Other Names: Monoethanolamine (MEA)
- Functional Groups:

- Hydroxyl group (-OH)
- Amino group (-NH₂)

Structure of Ethanolamine

- It is a simple alkanolamine.
- Contains both:
 - Alcohol group (-OH)
 - Primary amine group (-NH₂)

Uses of Ethanolamine:

- ✓ In Pharmaceutical Industry:
 - Used as an alkalizing agent in creams, lotions, and ointments.
 - Acts as a buffering agent in topical formulations.
 - Used in the preparation of emulsifiers and soap bases.
 - Found in some cough syrups and eye drops.
- ✓ As a Surfactant and Emulsifier:
 - Common ingredient in:
 - Shampoos

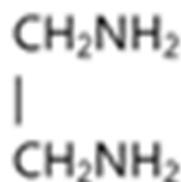
- Conditioners
- Cleansers
- Helps to stabilize emulsions and acts as a foam booster.

✓ In Gas Treatment:

- Used in scrubbing acidic gases like CO₂ and H₂S from natural gas and refinery streams.
- Forms water-soluble salts with acidic gases.

✓ In Detergents and Soaps:

- Improves cleaning power, solubility, and foam stability.
- Used in industrial degreasers, floor cleaners, and surface disinfectants.


✓ In the Production of Other Chemicals:

- Intermediate in the synthesis of:
 - Detergents
 - Textile additives
 - Cosmetics
 - Corrosion inhibitors
 - Herbicides (e.g., glyphosate)

Ethylenediamine

- Chemical Formula: $C_2H_8N_2$
- IUPAC Name: 1,2-Diaminoethane
- Common Name: Ethylenediamine (EDA)
- Functional Group:
 - Two primary amine groups ($-NH_2$) on adjacent carbon atoms

Structure of Ethylenediamine

- Contains a two-carbon ethylene backbone with a $-NH_2$ group at each end.

Uses of Ethylenediamine:

- ✓ In Pharmaceutical Industry:
 - Used as an intermediate in the manufacture of:
 - Antihistamines (e.g., Tripelennamine)
 - Chelating agents like EDTA (Ethylenediaminetetraacetic acid)
 - Used to stabilize some vaccine and injection solutions.

As a Chelating Agent:

- Binds to metal ions via both nitrogen atoms to form chelates.
- Forms stable complexes with:
 - Nickel (Ni^{2+})
 - Copper (Cu^{2+})

- Cobalt (Co²⁺)
- Important in analytical and coordination chemistry.

✓ In Polymer and Resin Industry:

- Used in the production of:
 - Polyamides
 - Epoxy resins
 - Urethane foams
- Acts as a curing agent and hardener.

✓ In Detergents and Fabric Softeners:

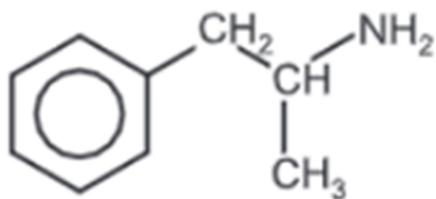
- Used to produce cationic surfactants and fabric softener bases.
- Provides alkalinity and helps in dirt removal.

✓ In Agrochemical Industry:

- Used in the synthesis of:
 - Herbicides
 - Fungicides
 - Pesticides

✓ In Corrosion Inhibitors and Coolants:

- Acts as a corrosion inhibitor in boiler water treatments.
- Added to coolants and antifreeze formulations.


✓ In Research and Coordination Chemistry:

- Used as a ligand in inorganic synthesis.
- Part of Werner complexes and coordination compound studies.

Amphetamine

- Chemical Formula: C₉H₁₃N
- IUPAC Name: 1-Phenylpropan-2-amine
- Common Name: Amphetamine
- Drug Class: CNS stimulant, sympathomimetic amine

Structure of Amphetamine

- Structure contains:
 - A phenyl ring (C₆H₅-)
 - A propyl chain with a methyl group (-CH₃) and a primary amine group (-NH₂)

Uses of Amphetamine:

- ✓ Treatment of ADHD (Attention Deficit Hyperactivity Disorder):
 - One of the primary drugs used for treating ADHD.
 - Improves attention span, concentration, and behavior control.
- ✓ Treatment of Narcolepsy:
 - Used to promote wakefulness in patients with narcolepsy (a sleep disorder).
 - Reduces excessive daytime sleepiness.

✓ Appetite Suppressant:

- Historically used in the treatment of obesity (now limited due to abuse potential).
- Suppresses appetite by stimulating the hypothalamus.

✓ CNS Stimulant:

- Increases the release of dopamine and norepinephrine in the brain.
- Enhances alertness, focus, mood, and physical performance.

✓ Military and Aviation Use:

- Sometimes issued in military/aviation settings as "go pills" to maintain alertness during long missions (under strict supervision).

✓ For Depression (historical use):

- Used in the past to treat treatment-resistant depression, but replaced by safer drugs today.