

WELCOME

TO

This is an Education Platform

We Provide PDF Notes for Pharmacy Students

Web Site <http://www.fdspharmacy.in/>

You tube <https://www.youtube.com/c/FDSpharmacy>

Telegram <https://t.me/Fdspharmacy>

App <https://play.google.com/store/apps/details?id=com.FDSPharmacyMedia.FDSPharmacy>

E-mail fdsparmacyinfo@gmail.com

Bachelor of Pharmacy Physical Pharmaceutics I

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 in
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Organic Chemistry II

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 in
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Engineering

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 in
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Microbiology

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 in
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

FDPharmacy

.....

D.Pharma B.Pharma

- 👉 PDF Notes
- 👉 Practical Manual
- 👉 Important Questions
- 👉 Assignment etc

Download Now

ANDROID APP ON

Google play

www.fdpharmacy.in

PHARMACEUTICAL MICROBIOLOGY

UNIT 4

TOPIC :

- Designing of aseptic area, laminar flow equipments; study of different sources of contamination in an aseptic area and methods of prevention, clean area classification.

Principles and methods of different microbiological assay.

Methods for standardization of antibiotics, vitamins and amino acids.

Assessment of a new antibiotic.

Learn and Educate

Aseptic Area

- An Aseptic Area is a controlled and sterile environment designed to prevent contamination during the manufacture, preparation, or handling of pharmaceutical products, biotechnology products, and healthcare materials.
- The primary objective is to minimize the risk of contamination from microorganisms, particles, and other impurities to ensure product safety, purity, and quality.

Characteristics of an Aseptic Area

1. Controlled Environment

- The area is maintained under strict control of temperature, humidity, air quality, and pressure.
- Positive air pressure is used to prevent entry of contaminated air from surrounding areas.
- Access is restricted and monitored to reduce contamination risks.

2. Air Filtration System

- Uses HEPA (High-Efficiency Particulate Air) filters to remove airborne particles and microorganisms.
- Laminar Airflow System provides a uniform airflow (unidirectional), reducing the chances of cross-contamination.
- Proper ventilation ensures sterile conditions during operations.

3. Personnel Hygiene & Gowning

- Personnel must undergo strict gowning procedures before entering the aseptic area.
- Includes use of sterile gowns, gloves, masks, shoe covers, and head covers.
- Training in aseptic techniques and hygiene practices is essential.

4. Environmental Monitoring

- Continuous monitoring of microbial and particulate contamination.
- Parameters routinely checked:
 - Air particle counts

- Surface sterility (swab/rinse tests)
- Temperature and humidity control
- Pressure differentials
- Regular documentation is maintained for compliance.

5. Sterile Materials & Equipment

- All materials, tools, and equipment entering the aseptic area must be sterilized.
- Sterilization methods include:
 - Autoclaving (moist heat)
 - Dry heat sterilization
 - Chemical sterilants or gaseous sterilization (e.g., ethylene oxide)
- Transfer of materials is done through airlocks or pass boxes.

6. Regular Cleaning & Disinfection

- Surfaces and equipment are cleaned with validated disinfectants.
- Routine cleaning schedules are followed as per Standard Operating Procedures (SOPs).
- Periodic fumigation or sterilization may be carried out to maintain sterility.

Classification of Aseptic Area

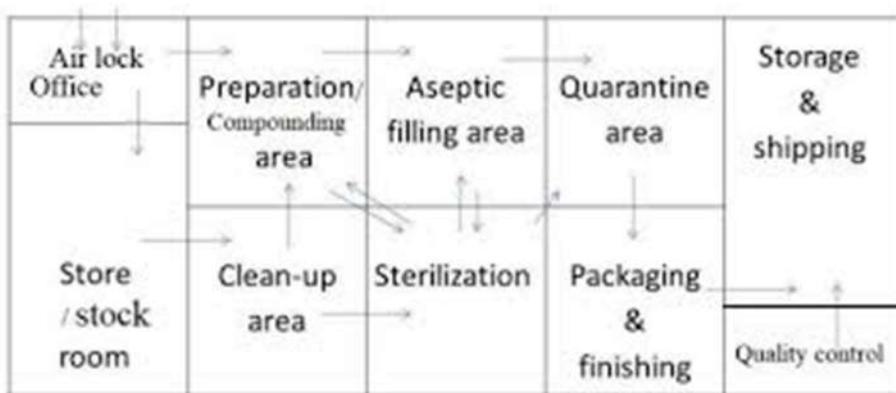
According to WHO GMP and EU GMP guidelines, aseptic areas are classified into four grades (A, B, C, D) based on the level of cleanliness and sterility required.

Grade A

- Known as critical zones.
- Used where sterile products or materials are directly exposed to the environment.
- Examples:
 - Aseptic filling
 - Sterile product compounding
 - Open vial/bottle manipulations
- Requires the highest level of sterility assurance.
- Maintained by laminar airflow workstations or isolators providing a unidirectional airflow.

Grade B

- Serves as the background environment for Grade A zones.
- Provides an additional protective layer around critical operations.
- Personnel working here must follow strict aseptic gowning and hygiene practices.
- Example: Background for aseptic filling operations.


Grade C

- Used for less critical stages in sterile manufacturing.
- Examples:
 - Preparation of solutions
 - Component washing, preparation, and staging before final sterilization
- Controlled environment but less stringent than Grade A and B.

Grade D

- Used for non-critical operations.
- Examples:
 - Handling and preparation of raw materials before sterilization
 - Initial cleaning and weighing operations
- Provides basic environmental control before materials enter higher-grade areas.

Layout of Aseptic Area

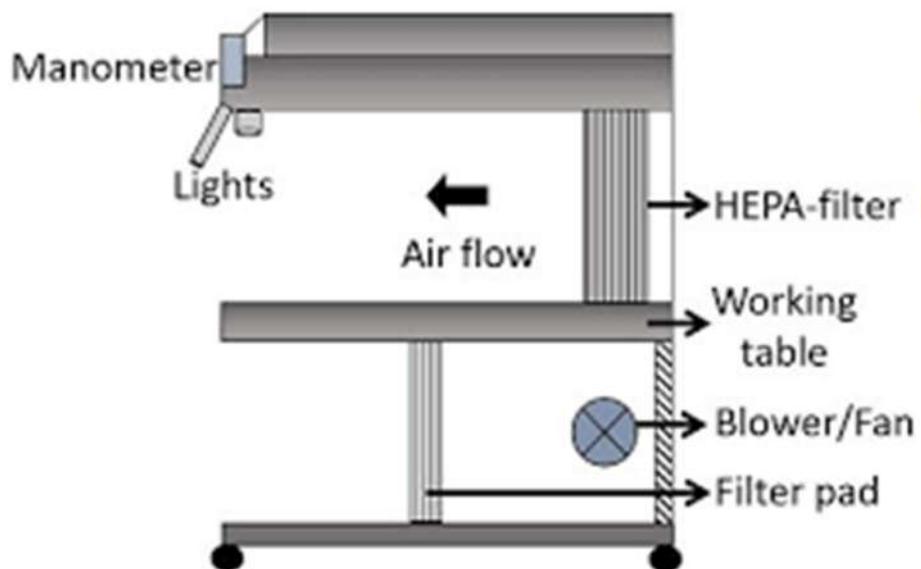
Laminar Flow Equipments

- Laminar Flow Equipment, also known as Laminar Air Flow (LAF), Laminar Flow Cabinet, Clean Bench, or Tissue Culture Hood, is a specialized device designed to provide a sterile and contamination-free working environment.
- It is widely used in pharmaceuticals, biotechnology, medical, food, and research laboratories.

Principle

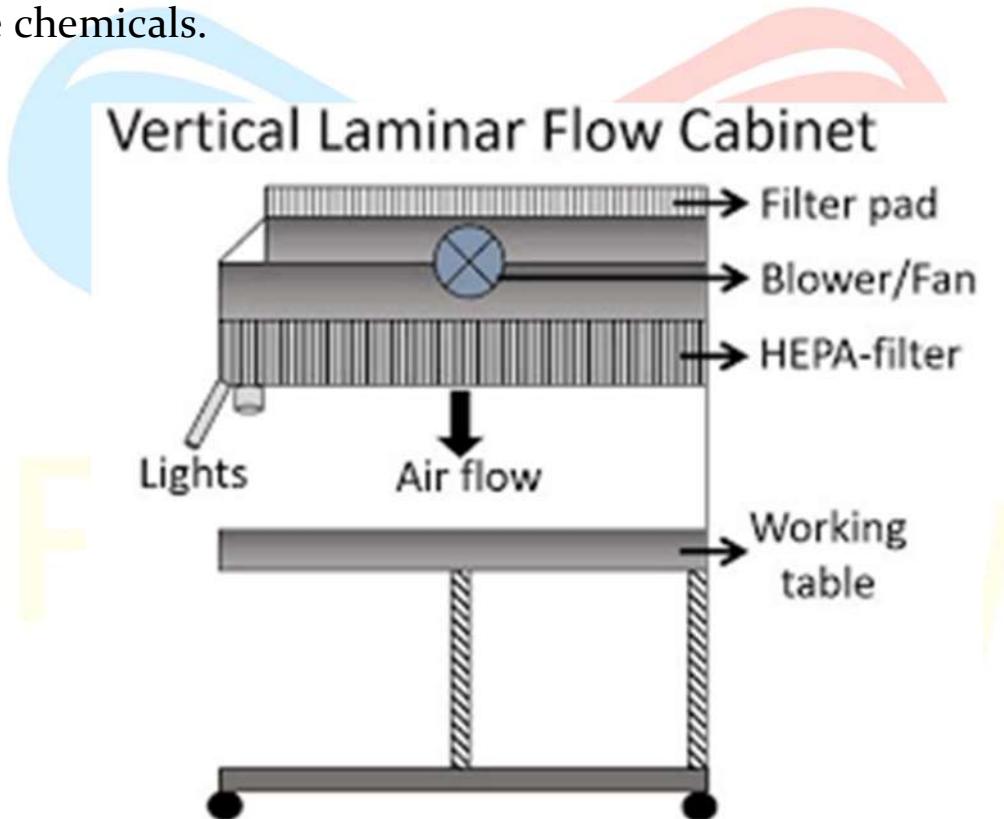
- The principle of Laminar Air Flow (LAF) was first developed in the early 1960s.
- It works on the concept of unidirectional airflow filtered through HEPA (High-Efficiency Particulate Air) or ULPA (Ultra-Low Penetration Air) filters.
- The system removes 99.97–99.99% of airborne particles ≥ 0.3 microns, thereby ensuring a sterile zone.
- **Limitation:** It does not filter toxic gases, vapors, or fumes.

Working of Laminar Flow Equipment


1. **Air Suction:** Air is drawn into the system by an internal blower/fan.
2. **Pre-Filtration:** Dust and larger particles are removed by pre-filters.
3. **HEPA/ULPA Filtration:** Air passes through fine filters, removing microorganisms and particulate matter.
4. **Unidirectional Airflow:** The filtered air is blown across the workspace in a **steady**, low-turbulence, laminar flow.
5. **Contamination Prevention:** This constant airflow pushes contaminants out of the working area, ensuring a sterile environment.

Types of Laminar Flow Cabinets

1. Horizontal Laminar Flow Cabinet


- Air flows horizontally from the back side of the cabinet towards the operator.
- Provides effective protection to the product from contamination.
- Used in pharmaceutical aseptic compounding, culture transfer, and media preparation.
- **Limitation:** Does not protect the operator from hazardous substances, as air flows directly towards them.

Horizontal Laminar Flow Cabinet

2. Vertical Laminar Flow Cabinet

- Air flows vertically from top to bottom over the working surface.
- Provides protection to the product and reduces the chance of air blowing directly on the operator.
- Suitable for microbiology, tissue culture, electronics, and food industries.
- Safer than horizontal type but still ~~not~~ suitable for handling toxic or volatile chemicals.

Applications

- **Pharmaceutical & Medical Laboratories:** Aseptic preparation of sterile formulations, culture handling.
- **Electronics Manufacturing:** Prevention of dust contamination in microchips and semiconductors.
- **Food Industry:** Sterile packaging and microbiological testing.
- **Research Laboratories:** Used for tissue culture, microbiological experiments, and sterile transfers.

Sources of Contamination & Their Prevention in Aseptic Area

- Maintaining sterility in an aseptic area is essential for the production of sterile pharmaceutical products. Contamination can occur from several sources, and strict measures are required to prevent it.

1. Atmosphere

- **Source:**
 - Air contains dust particles, microorganisms, fungal spores, and aerosols.
 - Turbulence or improper air handling increases contamination risk.
- **Prevention:**
 - Use of HEPA filters for air purification.
 - Maintain positive pressure differentials between rooms.
 - Employ Laminar Air Flow (LAF) systems for sterile airflow.
 - Regular fumigation and use of chemical disinfectants for air sterilization.

2. Operator

- **Source:**
 - Humans are the biggest source of contamination.
 - Skin flakes, sweat, saliva, hair, and improper clothing can release microbes.
- **Prevention:**
 - Strict personnel hygiene practices.
 - Use of sterile gowns, gloves, masks, shoe covers, and head covers.
 - Training in aseptic techniques.
 - Restrict unnecessary movement and talking inside aseptic zones.

3. Raw Materials

- **Source:**

- Raw materials, if not sterilized, may carry a high microbial load.
- Packaging materials can also introduce contaminants.

- **Prevention:**

- Use of sterile or sterilized raw materials.
- Decontamination of packaging materials before entry (disinfectant wiping, UV exposure).
- Transfer of materials through pass boxes/airlocks.

4. Equipment & Utensils

- **Source:**

- Processing equipment, containers, or packaging machines may act as contamination carriers.
- Improper cleaning leads to microbial growth and cross-contamination.

- **Prevention:**

- Sterilization by autoclaving, dry heat, chemical disinfectants, or gaseous sterilants (e.g., ethylene oxide).
- Regular cleaning and preventive maintenance.
- Validation and monitoring of sterilization cycles.

5. Water Supply

Learn and Educate

- **Source:**

- Contaminated water may carry bacteria, endotoxins, or chemical impurities.
- Risk is high when water is used for rinsing, solution preparation, or cooling.

- **Prevention:**

- Use only purified water, distilled water, or Water for Injection (WFI) in aseptic processes.
- Regular monitoring of water quality (microbial count, endotoxins).
- Storage and distribution systems must be sterile and corrosion-resistant (stainless steel).

Clean Area Classification

A Clean Area (Cleanroom) is a specially designed and controlled space where the concentration of airborne particles and microorganisms is minimized to prevent contamination of products, particularly in pharmaceutical, biotechnology, medical device, and electronic industries. The classification of clean areas is based on standards such as:

- ISO (International Organization for Standardization) → ISO 14644-1
- Federal Standard 209E (USA) → now largely replaced by ISO standards

ISO 14644-1 Classification System

➤ This is the most widely used standard for cleanrooms.

It classifies clean areas based on the maximum allowable concentration of airborne particles per cubic metre of air.

ISO Classes of Cleanrooms (for $\geq 0.1 \mu\text{m}$ particles):

ISO Class	Maximum Number of Particles / m^3 ($\geq 0.1 \mu\text{m}$)
ISO 1	10
ISO 2	100
ISO 3	1,000
ISO 4	10,000
ISO 5	100,000
ISO 6	1,000,000
ISO 7	Not specified for $\geq 0.1 \mu\text{m}$
ISO 8	Not specified for $\geq 0.1 \mu\text{m}$
ISO 9	Room air (uncontrolled)

Key Points

- ISO 1 → ISO 5: Ultra-clean areas used in aseptic filling, semiconductor, nanotechnology.
- ISO 6 → ISO 8: Controlled environments used in pharmaceutical preparation, packaging, clean manufacturing.
- ISO 9: Equivalent to normal room air, with no special filtration.
- Particle count is measured using particle counters.

Microbiological Assay

A Microbiological Assay is a bioassay method used to determine the concentration, potency, or biological activity of a substance by measuring its effect on the growth of microorganisms.

It is particularly useful for substances that are:

- Difficult to measure by chemical methods.
- Active at very low concentrations.

Principle

- The test substance (e.g., antibiotic, vitamin, amino acid) influences microbial growth.
- The degree of microbial growth or inhibition is proportional to the concentration of the test substance.
- By comparing the effect of the test sample with that of a standard reference, the potency can be determined.

Applications

- Determination of the potency of antibiotics.
- Measurement of vitamin concentrations.
- Estimation of amino acids required for microbial growth.
- Quality control of pharmaceutical and nutritional products.

Microbiological Assay of Antibiotics

- Antibiotics are a class of drugs used to treat infections caused by bacteria and other microorganisms.
- A microbiological assay of antibiotics is a method used to determine the potency and concentration of an antibiotic by measuring its effect on the growth of specific microorganisms.

Principle

- The assay is based on the ability of an antibiotic to inhibit the growth of a suitable test microorganism.
- The degree of inhibition is proportional to the concentration of the antibiotic present.
- By comparing the inhibition produced by a standard antibiotic solution and the test solution, the potency of the sample can be determined.

Requirements

- Standard antibiotic solution (reference).
- Test antibiotic solution (sample).
- Culture medium (nutrient agar or broth).
- Test microorganism (sensitive to the antibiotic).
- Incubator and sterile aseptic conditions.

Test Microorganisms for Different Antibiotics

Antibiotic	Test Microorganism
Amikacin	<i>Staphylococcus aureus</i>
Amphotericin B	<i>Saccharomyces cerevisiae</i>
Bleomycin	<i>Mycobacterium smegmatis</i>
Doxycycline	<i>Bacillus subtilis</i>
Rifampicin	<i>Staphylococcus aureus</i>

Composition of Medium (Example)

- Pancreatic digest of casein → 4.0 g/L
- Yeast extract → 30 g/L
- Beef extract → 15 g/L
- Dextrose → 10 g/L
- Agar → sufficient to solidify medium

(Medium may vary depending on antibiotic and organism.)

Methods for Assay of Antibiotics

(As per Indian Pharmacopoeia, BP, USP)

1. Turbidimetric (Tube Dilution) Method

- In this method, different concentrations of antibiotic solutions are prepared in a liquid broth medium.
- The medium is inoculated with the test microorganism and incubated.
- Microbial growth leads to increased turbidity in the broth.
- Turbidity is measured using a spectrophotometer.
- The potency of the test antibiotic is determined by comparing turbidity of the sample with that of the standard.

Advantage: Rapid, quantitative results.

Limitation: Requires strict control of conditions, only suitable for soluble antibiotics.

2. Cup-Plate (Cylinder Plate or Agar Diffusion) Method

- A solid agar medium is uniformly seeded with the test microorganism.
- Small cups (wells) or cylinders are placed in the agar.
- Standard and test antibiotic solutions of known concentrations are added into the wells.
- During incubation, the antibiotic diffuses into the agar and inhibits microbial growth, forming a zone of inhibition.
- The diameter of the zone is measured and compared with that of standard solutions.

Advantage: Simple, widely used for many antibiotics.

Limitation: Less precise than turbidimetric method.

Microbiological Assay of Vitamins

- A microbiological assay of vitamins is a method used to determine the concentration of vitamins based on the growth response of specific microorganisms.
- It is particularly useful for water-soluble vitamins, especially the B-complex group (B₁, B₂, B₆, B₁₂, folic acid, niacin, biotin, etc.).

Principle

- Many microorganisms have specific vitamin requirements for growth.
- When grown in a medium lacking the vitamin, their growth depends directly on the amount of vitamin supplied in the test sample.
- The extent of microbial growth (turbidity, acid production, etc.) is proportional to the vitamin concentration.
- By comparing the response of the test sample with that of a standard solution, the vitamin content can be quantified.

Basal Medium for Vitamin Assays

The basal medium supplies all essential nutrients except the vitamin under test.

Typical components include:

- Carbon source: Glucose, Dextrose
- Nitrogen source: Casein hydrolysate, Ammonium salts, Yeast extract
- Buffering agents: e.g., phosphate buffers
- Trace elements: Iron, Magnesium, Zinc, etc.
- Growth factors: If required, for optimal microbial growth

(For Vitamin B₁₂ assay, medium lacks Vitamin B₁₂ but contains all other growth requirements.)

Procedure (Example: Vitamin B₁₂ Assay with *Lactobacillus leichmannii*)

1. Prepare a series of standard Vitamin B₁₂ solutions (e.g., 0.5 ml, 1 ml, 1.5 ml, 2 ml, ... up to 5 ml).
2. To each tube, add basal medium and adjust volume to 10 ml with distilled water.
3. Prepare test sample solutions in the same way.
4. Sterilize all tubes in autoclave (121°C, 15 min).
5. Inoculate each tube with 1 drop of bacterial culture (*Lactobacillus leichmannii*).
6. Incubate at 30–37°C for 64–72 hours.
7. Measure microbial growth by:
 - Turbidimetric method: Optical density (OD) using spectrophotometer.
 - Titrimetric method: Measuring acid produced during microbial growth.
8. Compare growth response of test with standard curve → determine vitamin concentration.

Measurement of Growth

1. Turbidimetric Method – Growth measured by turbidity (OD at 540–600 nm).
2. Titrimetric Method – Growth measured indirectly via acid/base titration due to microbial metabolism.

Applications

- **Food Analysis:** Determining vitamin levels in food and beverages.
- **Pharmaceutical Analysis:** Standardization of vitamin preparations (B-complex tablets, injections).
- **Clinical Diagnosis:** Checking vitamin deficiencies in patients.
- **Research:** Studying microbial nutrition and vitamin metabolism.

Microbiological Assay of Amino Acids

- The microbiological assay of amino acids is a **bioassay method** used to estimate the concentration of specific amino acids in a given sample.
- It is based on the principle that certain microorganisms require specific amino acids for their growth.
- When these amino acids are supplied in the medium, microbial growth occurs, and the extent of growth is proportional to the concentration of the amino acid present.
- This method is widely applied in the food industry, pharmaceutical industry, and clinical diagnostics.

Principle

- Some microorganisms cannot synthesize certain amino acids and thus depend on them from the external medium for growth.
- A basal medium is prepared which lacks the amino acid under study.
- When the test sample containing the amino acid is added, the growth response of the microorganism reflects the concentration of the amino acid.
- The concentration in the unknown sample is determined by comparing the microbial growth with that obtained from standard solutions of the amino acid.

Procedure

1. Preparation of Basal Medium

- Prepare a nutrient medium containing all essential nutrients except the amino acid under study.
- Example: For lysine assay, medium lacks lysine; for tryptophan assay, medium lacks tryptophan.

2. Selection of Microorganism

- Choose a microorganism with specific amino acid requirements.
- Examples:

- *Lactobacillus arabinosus* → requires lysine
- *Escherichia coli* → requires tryptophan

3. Inoculation

- Inoculate the selected microorganism into tubes/flasks containing basal medium with either test sample or standard amino acid solution.

4. Incubation

- Incubate the culture under optimum growth conditions (temperature, pH, and aeration).

5. Measurement of Growth

- Microbial growth is measured after incubation by:
 - **Turbidimetric method** → measuring optical density with spectrophotometer.
 - **Acidimetric method** → measuring acid produced by fermentation (pH change).

6. Assay

- Compare the growth response of the microorganism in the test sample with that of standard solutions to determine the concentration of amino acid present.

Applications

Learn and Educate

- **Food Industry:** Determination of amino acid composition in food products and dietary supplements.
- **Pharmaceuticals:** Standardization of amino acid formulations, parenteral nutrition solutions.
- **Clinical Diagnostics:** Detection of amino acid deficiencies or metabolic disorders.
- **Research:** Studying amino acid metabolism and nutritional requirements of organisms.

Assessment of New Antibiotic: Minimum Inhibitory Concentration (MIC)

- The assessment of new antibiotics is essential to evaluate their antimicrobial potency and effectiveness against different microorganisms.
- The most common parameter used is the Minimum Inhibitory Concentration (MIC).
- MIC helps in comparing new antibiotics with existing drugs, deciding therapeutic dosages, and detecting resistance.

Definition of MIC

- Minimum Inhibitory Concentration (MIC):
The lowest concentration of an antimicrobial agent that completely inhibits the visible growth of a particular test microorganism after a specified incubation period.
- It is usually expressed in $\mu\text{g}/\text{ml}$ or units/ml.

Significance of MIC

- Determines the potency of a new antibiotic.
- Useful for evaluating disinfectants, antiseptics, preservatives, and antibiotics.
- Helps in identifying the spectrum of activity (Gram-positive / Gram-negative bacteria, fungi, etc.).
- Guides dosage selection for therapeutic use.
- Important in clinical microbiology for detecting drug resistance (e.g., MRSA, TB).

Methods for MIC Determination

1. Liquid Dilution Method (Broth Dilution)

- Prepare serial dilutions of the antibiotic in liquid nutrient broth.
- Inoculate with the test microorganism.
- Incubate under suitable conditions (e.g., 24 hrs at 35–37°C for bacteria).
- The **lowest concentration with no visible turbidity** = MIC.

2. Solid Dilution Method (Agar Dilution)

- Antibiotic is incorporated into agar plates in varying concentrations.
- A standard inoculum of test microorganism is spotted onto the agar.
- After incubation, the lowest concentration of antibiotic that prevents visible colony growth = MIC.

3. Other Variations

- **Microdilution methods** (using microtiter plates for high-throughput testing).
- **E-test (Gradient Diffusion Method)**: Uses a strip with an antibiotic gradient placed on an inoculated agar plate. The MIC is read at the point where growth inhibition intersects the strip.

Applications of MIC Testing

- **Pharmaceutical R&D**: Evaluation of new antibiotics before clinical trials.
- **Quality Control**: Standardization of antimicrobial formulations.
- **Clinical Practice**: Selection of effective antibiotics for patient treatment.
- **Public Health**: Monitoring trends of antimicrobial resistance.