

WELCOME

TO

This is an Education Platform

We Provide PDF Notes for Pharmacy Students

Web Site <http://www.fdspharmacy.in/>

You tube <https://www.youtube.com/c/FDSpharmacy>

Telegram <https://t.me/Fdspharmacy>

App <https://play.google.com/store/apps/details?id=com.FDSPharmacyMedia.FDSPharmacy>

E-mail fdsparmacyinfo@gmail.com

Bachelor of Pharmacy Communication skills

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Human Anatomy and Physiology I

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutical Inorganic Chemistry

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Remedial Biology

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy Pharmaceutics I

NOTES

✓ Unit 1 **All Unit**
✓ Unit 2 **in**
✓ Unit 3 **One PDF**
✓ Unit 4
✓ Unit 5

Visit our Website
WWW.fdspharmacy.in

FDPharmacy

.....

D.Pharma

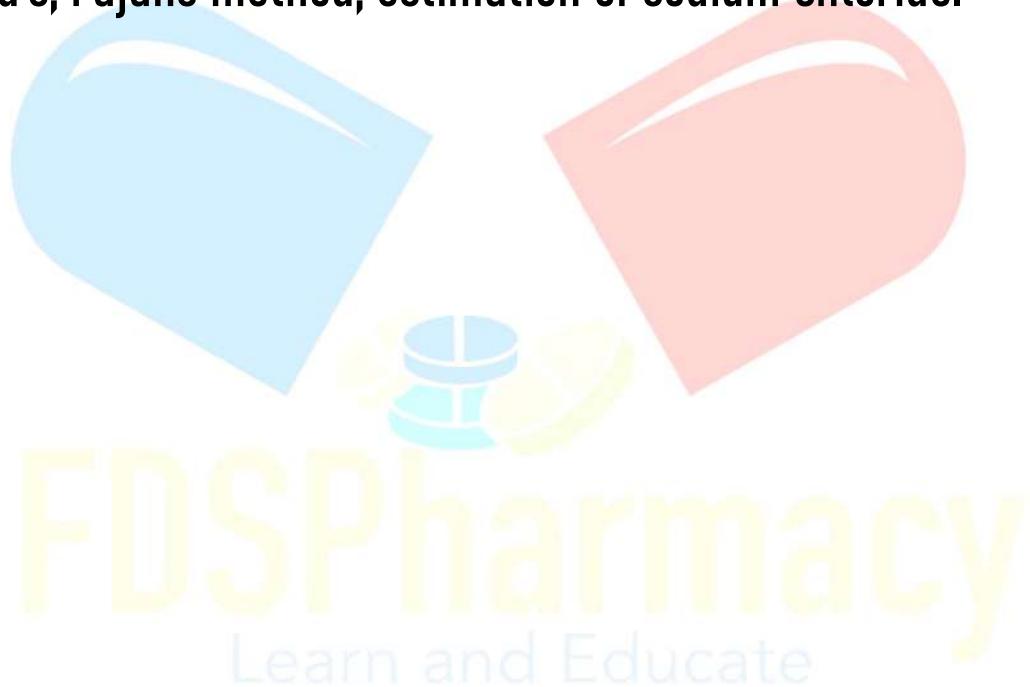
B.Pharma

- 👉 PDF Notes
- 👉 Practical Manual
- 👉 Important Questions
- 👉 Assignment etc

Download Now

ANDROID APP ON

Google play


www.fdpharmacy.in

PHARMACEUTICAL ANALYSIS I

UNIT 3

TOPIC :

- **Precipitation titrations : Mohr's method, Volhard's, Modified Volhard's, Fajans method, estimation of sodium chloride.**

Precipitation titration

- Precipitation titration is a type of titration which involves the formation of precipitate during the titration techniques
- In precipitation titration the titrant reacts with analytic and forms an insoluble substance called precipitate
- For example AgNO_3 is used as a precipitating agent for the determination of Cl^-

Principle

- Formation of an insoluble product by the combination of two ionic species is known as precipitation.
- Precipitation reaction are not frequently used in titration because of the precipitation reaction do not comply with desired specification.

Indicators used in precipitation

- The end point in precipitation titration can be marked using a reagent known as indicator
- **Adsorption indicators**
- Adsorption indicators are substance that indicates an excess of a reactant in argentometric titration
 - Precipitation becomes coloured when adsorption indicators is adsorbed
 - Eg sodium salt of fluorescein
 - Sodium fluor can be used as an indicator in the titration of chloride with AgNO_3 solution in a neutral or slightly basic medium

Precipitation titration method

- ◆ The precipitation titration silver nitrate with chloride, bromide, iodide, and thiocyanate are most widely used
- ◆ These precipitation titration are also known as Argentometric titration

- ♦ Since silver is always involved during the reaction therefore concluding that there titration have limited use

There procedure are follow in precipitation titration

- I. Mohr's method
- II. Volhard's method
- III. Modified volhard's method
- IV. Farjan's method

Mohr's method

- This method is named after Karl Friedrich Mohr.
- In this method potassium chromate is used as an indicator which produces Red coloured silver chromate at the end point when all the chloride ions have reached.
- In Mohr's method the end point is detected when a coloured precipitate of chloride or bromide is formed.
- A neutral sol of chloride ions is titrated with silver nitrate solution using a small quantity of potassium chromate solution as an indicator.
- The chromate ions combine with silver ions at the end point, forming a red coloured and sparingly soluble silver chromate.

Principle:

- Based on precipitation reaction:
Chloride or bromide ions react with silver nitrate to form white silver halide precipitate (AgCl or AgBr).
- After all halide ions are precipitated, silver ions react with chromate ions to form a brick-red precipitate of silver chromate (Ag_2CrO_4).
- This color change signals the end point.

Chemical Reactions:

Main reaction (during titration):

At end point (excess Ag⁺):

Procedure:

1. Take a measured volume of chloride-containing solution in a conical flask.
2. Add a few drops of potassium chromate indicator (yellow color).
3. Titrate with standard AgNO₃ solution.
4. Formation of red precipitate of Ag₂CrO₄ indicates end point.
5. Note the volume of titrant used.

Applications:

- Estimation of chloride in drinking water and saline injections.
- Determination of NaCl in pharmaceutical formulations.
- Estimation of halides in industrial effluents and environmental samples.

Volhard's method

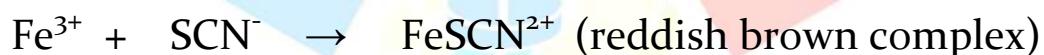
- This method is named after Jacob Volhard
- In this method a soluble coloured compound forms at the end point
- Thiocyanate is used to titrate silver ions in an acidic solution using ferric ions as an indicator
- In which an excess of a standard solution of silver nitrate is added to a chloride containing sample solution. The excess silver is then back titrated using a standardized Sol of potato or ammonium thiocyanate with ferric ions as an indicator

Principle:

- A known excess of standard AgNO₃ is added to the solution containing halide ions to precipitate silver halide (AgCl, AgBr, etc.).

- The unreacted Ag^+ is then back-titrated with standard NH_4SCN .
- At the end point, ferric ions (Fe^{3+}) react with SCN^- to form a red complex (FeSCN^{2+}), indicating completion.

Chemical Reactions:


Step 1: Precipitation of halide

Step 2: Back titration of excess Ag^+

At End Point:

Procedure :

1. Add a known excess volume of standard AgNO_3 to the chloride-containing solution.
2. Precipitation of AgCl occurs.
3. Filter (if needed) and wash the precipitate with nitric acid.
4. Titrate the remaining Ag^+ with standard NH_4SCN .
5. Add ferric ammonium sulfate as an indicator.
6. End point: Appearance of reddish-brown color due to FeSCN^{2+} .

Applications:

- ✓ Estimation of chloride, bromide, and iodide ions.
- ✓ Determination of NaCl in pharmaceutical formulations and infusions.
- ✓ Applicable in food, biological samples, and water testing

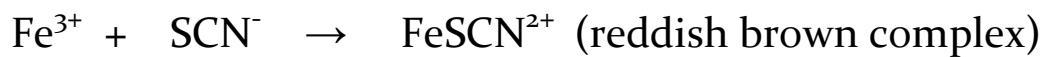
Modified volhard s method I.P 1985

- The principle of assay by volhard s method is based on indirect volumetric precipitation titration
- In this method nitric acid solution is used to acidify NaCl solution and then in the presence of nitrobenzene, this solution is treated with measured excess amount of standard solution of silver nitrate
- Some moles of silver nitrate are consumed in the reaction with NaCl and the remaining unreacted silver nitrate is determined by titration with a standard solution of ammonium thiocyanate. In this titration solution of ferric ammonium sulphate ferric alum is used as an indicator

Principle:

- Excess standard AgNO_3 is added to precipitate all halide ions as AgX ($\text{X} = \text{Cl}^-, \text{Br}^-$).
- The precipitate is filtered off.
- The remaining unreacted Ag^+ in the filtrate is titrated with NH_4SCN (ammonium thiocyanate).
- Ferric ion is used as an indicator to detect the endpoint (formation of red ferric thiocyanate complex).

Chemical Reactions:


Step 1: Precipitation of halide

Step 2: Back titration of excess Ag^+

At End Point:

Procedure :

1. Add known excess standard AgNO_3 to the halide solution.
2. Allow precipitation of AgCl (or AgBr).
3. Filter to remove the AgX precipitate.
4. Wash the precipitate with nitric acid to avoid loss of Ag^+ .
5. Collect the filtrate (contains excess Ag^+).
6. Add ferric ammonium sulfate as an indicator.
7. Titrate the filtrate with standard NH_4SCN .
8. Endpoint: Appearance of reddish-brown color (FeSCN^{2+} complex).

Applications:

- Estimation of chloride in pharmaceuticals (e.g., NaCl in injections).
- Water and food testing (chloride/bromide content).
- Analytical research involving halide salts.

Farjan s method

- This method named after kazimierz fajan
- Dichlorofluorescein uses as an indicator and the end point is observed when the green colour suspension turns pink
- Fajan s method involves the titration of chloride ions with silver ions using adsorption indicators
- These indicator are basically dyes that adsorb or desorb on the surface of the precipitate at the equivalence point and produces the colour change
- The indicator are acid dyes, fluorescein, etc
- Basic dyes rhodamine service

Principle:

- ❖ A halide ion (like Cl^-) is titrated with AgNO_3 .
- ❖ A precipitate of AgX (e.g., AgCl) forms during the reaction.
- ❖ Before the equivalence point, AgCl surface is negatively charged (due to Cl^-).
- ❖ After the equivalence point, surface becomes positively charged (due to excess Ag^+).
- ❖ The adsorption indicator (e.g., fluorescein) gets adsorbed on the surface and causes a visible color change, indicating the end point.

Chemical Reactions:

Main Titration:

At End Point:

- Excess Ag^+ \rightarrow positively charged AgCl particles
- Adsorbs negatively charged indicator \rightarrow color change

Procedure :

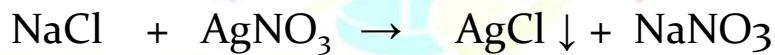
- ◆ Take halide-containing solution (e.g., NaCl) in a flask.
- ◆ Add a few drops of adsorption indicator (e.g., fluorescein).
- ◆ Titrate with standard AgNO₃.
- ◆ Watch for color change as indicator adsorbs onto precipitate surface.
- ◆ Note volume at sharp end point (color change persists).

Applications:

- Estimation of **chloride, bromide, iodide** in:
 - Pharmaceutical products (e.g., saline solutions)
 - Biological samples
 - Environmental/water analysis

Application of precipitation titration

- Precipitation reaction are applicable in removal of salts from water during water treatment in qualitative inorganic analysis and also in manufacturing of pigments
- Products of any reaction can also be isolated during work up by the precipitation reaction
- Precipitation reaction are also used in metallurgy


Estimation of Sodium Chloride (NaCl)

Principle:

- Sodium chloride (NaCl) contains chloride ions (Cl⁻).
- These ions react with silver nitrate (AgNO₃) to form white silver chloride precipitate (AgCl).
- After all Cl⁻ is precipitated, the excess Ag⁺ reacts with chromate ions (CrO₄²⁻) from the indicator (K₂CrO₄), forming red silver chromate (Ag₂CrO₄).
- The appearance of red color indicates the end point.

Chemical Reactions:

Main reaction (precipitation):

At end point:

Reagents Required:

- Standard AgNO₃ solution (0.1 N)
- Potassium chromate indicator (5% solution)
- Sample containing NaCl
- Distilled water

Indicator:

- **Potassium chromate (K₂CrO₄)**
 - Color: Yellow → Brick red at end point

Procedure:

- ❖ Pipette 25.0 mL of NaCl solution into a clean conical flask.
- ❖ Add 1–2 mL of potassium chromate indicator (yellow color appears).
- ❖ Titrate with 0.1 N AgNO₃ from a burette.
- ❖ Initially, white precipitate of AgCl forms.
- ❖ Near the end point, a brick-red color (Ag₂CrO₄) appears.
- ❖ Stop titration at the first permanent reddish tint.
- ❖ Note the burette reading (V mL).

Calculation:

Use the formula:

$$\text{Weight of NaCl (g)} = V \times N \times 58.44 / 1000$$

Where:

- V = Volume of AgNO₃ used (mL)
- N = Normality of AgNO₃
- 58.44 = Molecular weight of NaCl (g/mol)

Example Calculation:

If 25.0 mL of NaCl solution required 23.5 mL of 0.1 N AgNO₃, then:

$$\text{NaCl (g)} = 23.5 \times 0.1 \times 58.44 / 1000 = 0.1374 \text{ g}$$

Applications:

- ✓ Estimation of NaCl in 0.9% saline injections
- ✓ Chloride analysis in water and food samples
- ✓ Useful in pharmaceutical quality control