

WELCOME

TO

This is an Education Platform

We Provide PDF Notes for Pharmacy Students

Web Site <http://www.fdspharmacy.in/>

You tube <https://www.youtube.com/c/FDSpharmacy>

Telegram <https://t.me/Fdspharmacy>

App <https://play.google.com/store/apps/details?id=com.FDSPharmacyMedia.FDSPharmacy>

E-mail fdsparmacyinfo@gmail.com

Bachelor of Pharmacy
Physical Pharmaceutics
II
NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

**All Unit
in
One PDF**

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy
Pharmacology I

NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

**All Unit
in
One PDF**

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy
Pharmacognosy and
Phytochemistry I

NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

**All Unit
in
One PDF**

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy
Pharmaceutical Organic
Chemistry III
NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

**All Unit
in
One PDF**

Visit our Website
WWW.fdspharmacy.in

Bachelor of Pharmacy
Medicinal Chemistry
I
NOTES

- ✓ Unit 1
- ✓ Unit 2
- ✓ Unit 3
- ✓ Unit 4
- ✓ Unit 5

**All Unit
in
One PDF**

Visit our Website
WWW.fdspharmacy.in

FDPharmacy

.....

D.Pharma B.Pharma

- 👉 PDF Notes
- 👉 Practical Manual
- 👉 Important Questions
- 👉 Assignment etc

Download Now

ANDROID APP ON

Google play

www.fdpharmacy.in

MEDICINAL CHEMISTRY – I

UNIT 2

TOPIC :

- **Adrenergic Antagonists :**

Alpha adrenergic blockers :

Tolazoline, Phentolamine, Phenoxybenzamine, Prazosin,
Dihydroergotamine, Methysergide.

Beta adrenergic blockers : *SAR of beta blockers, Propranolol, Metibranolol, Atenolol, Betazolol, Bisoprolol, Esmolol, Metoprolol, Labetolol, Carvedilol.*

FDSPharmacy
Learn and Educate

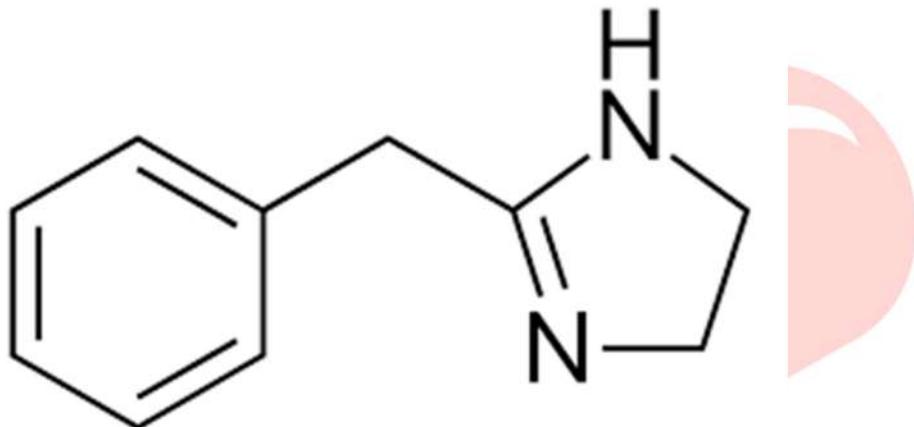
ADRENERGIC ANTAGONISTS (SYMPATHOLYTIC AGENTS)

- Adrenoceptor antagonists or adrenergic blocking agents or anti-adrenergic drugs block the responses mediated by adrenoceptor activation. In other words, they inhibit the actions that occur by the release of adrenaline.
- The action of sympathomimetic amines is selectively blocked by the anti-adrenergic drugs by acting either on the α - or β -receptors or on both of them. It brings about opposite effects of the catecholamines facilitated through the α -or β - receptors.
- Based on receptor selectivity, the α -and β -adrenoceptor blocking agents are divided into primary sub-groups.
- All of these agents have pharmacological antagonist or partial agonist property.
- A majority of them act competitively and have reversible actions.

Classification

- α -Adrenoceptor Blocking Drugs :
- β -Adrenoceptor Blocking Drugs :

α -Adrenoceptor Blocking Drugs : The effect of catecholamines facilitated via α -receptors are blocked by these agents furthermore, depending on the ability of these drugs to dissociate from the receptors, they may either be reversible or irreversible.


The drugs studied below are :

1. Tolazoline,
2. Phentolamine,
3. Phenoxybenzamine,
4. Prazosin.
5. Dihydroergotamine,
6. Methysergide

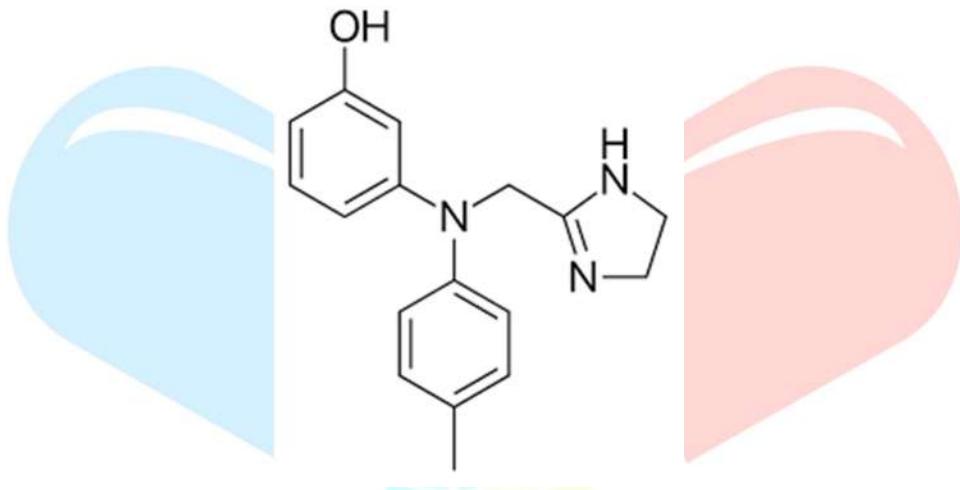
Tolazoline

Structure

- Synthetic non-selective α -adrenergic antagonist.
- Contains imidazoline ring with amine side chain.

Mechanism of Action (MOA)

- Blocks α_1 and α_2 receptors \rightarrow vasodilation.
- Reduces peripheral vascular resistance \rightarrow \downarrow blood pressure.
- Can cause reflex tachycardia due to vasodilation.


Uses

- Treatment of peripheral vascular diseases \rightarrow e.g., Raynaud's phenomenon.
- Pulmonary hypertension \rightarrow especially in newborns.
- Vasoconstrictor overdose \rightarrow reverses effects of excessive α agonists.

Phentolamine

Structure

- Synthetic non-selective α -adrenergic antagonist.
- Contains imidazoline ring and amine side chain.

Mechanism of Action (MOA)

- Blocks α_1 and α_2 receptors \rightarrow vasodilation \rightarrow \downarrow peripheral vascular resistance.
- May cause reflex tachycardia due to drop in blood pressure.
- Can also block α_2 presynaptic receptors \rightarrow \uparrow norepinephrine release.

Uses

- Pheochromocytoma \rightarrow control hypertension during surgery.
- Hypertensive crises \rightarrow especially due to catecholamines.
- Local vasodilation \rightarrow to reverse extravasation of vasoconstrictors.

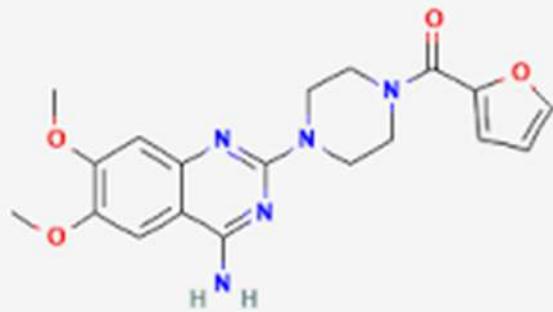
Phenoxybenzamine

Structure

- Synthetic non-selective α -adrenergic antagonist.
- Contains haloalkylamine structure allowing irreversible α receptor blockade.

Mechanism of Action (MOA)

- Irreversibly blocks α_1 and α_2 receptors \rightarrow prolonged vasodilation \rightarrow ↓ peripheral vascular resistance.
- Reflex tachycardia may occur due to α_2 blockade and ↑ norepinephrine release.
- Non-competitive antagonist \rightarrow effect lasts until new receptors are synthesized.


Uses

- Pheochromocytoma \rightarrow preoperative control of hypertension.
- Hypertensive crises \rightarrow due to catecholamine excess.
- Peripheral vascular diseases \rightarrow off-label use in some vasospastic disorders.

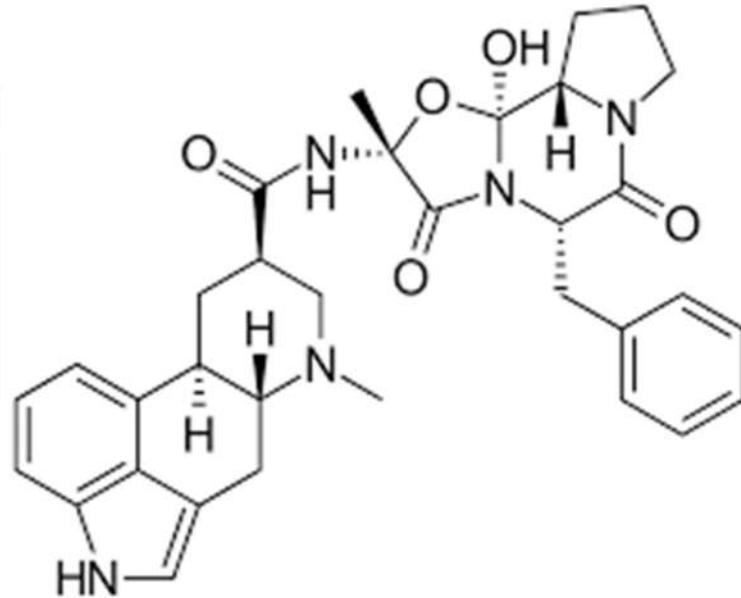
Prazosin

Structure

- Synthetic selective α_1 -adrenergic antagonist.
- Contains quinazoline ring and piperazine side chain.

Mechanism of Action (MOA)

- Blocks α_1 receptors \rightarrow vasodilation \rightarrow \downarrow peripheral vascular resistance.
- Minimal effect on α_2 receptors \rightarrow less reflex tachycardia compared to non-selective α blockers.
- Reduces both arterial and venous tone \rightarrow \downarrow blood pressure.


Uses

- Hypertension \rightarrow especially in mild to moderate cases.
- Benign prostatic hyperplasia (BPH) \rightarrow relaxes smooth muscles in bladder neck & prostate.
- Heart failure (adjunct therapy) \rightarrow reduces afterload.

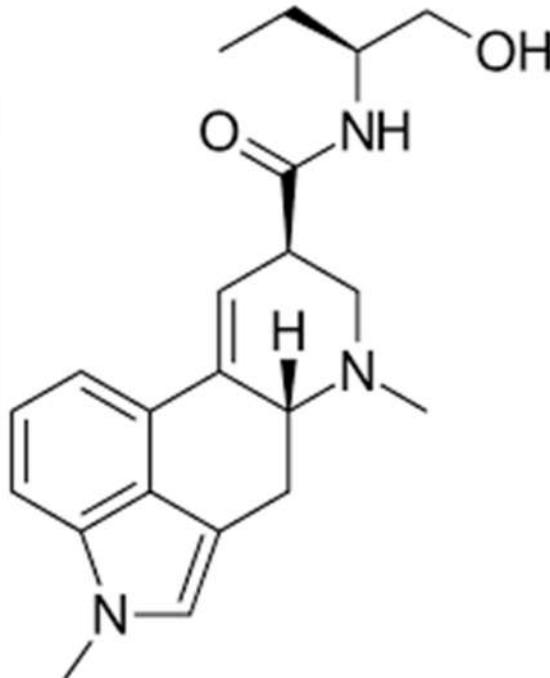
Dihydroergotamine

Structure

- Semi-synthetic ergot alkaloid.
- Derived from Ergotamine; contains indole ring system.

Mechanism of Action (MOA)

- Partial agonist/antagonist at α -adrenergic and serotonergic (5-HT) receptors.
- Causes vasoconstriction in cranial blood vessels → relieves migraine.
- Can also act on smooth muscles → uterine or vascular effects.


Uses

- Acute migraine attacks → intravenous, subcutaneous, or nasal route.
- Cluster headaches → short-term relief.
- Occasionally used in postpartum hemorrhage (off-label).

Methysergide

Structure

- Semi-synthetic ergot derivative.
- Structurally similar to serotonin (5-HT).

Mechanism of Action (MOA)

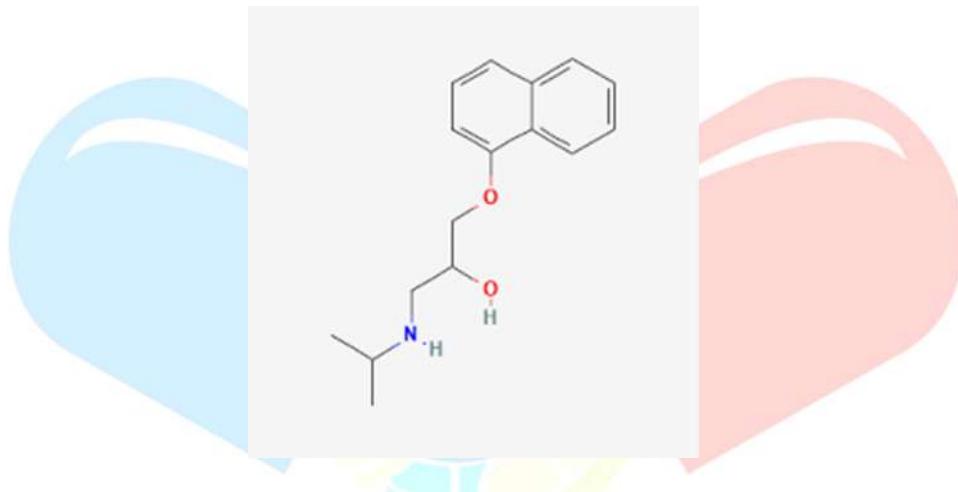
- 5-HT₂ receptor antagonist → prevents cranial vasodilation associated with migraine.
- Partial agonist at some serotonergic receptors → modulates vascular tone.
- Minimal effect on α -adrenergic receptors compared to other ergot derivatives.

Uses

- Migraine prophylaxis → reduces frequency and severity of attacks.
- Cluster headaches → preventive therapy (less commonly used today).

β-Adrenoceptor Blocking Drugs : The effect of catecholamines facilitated via β-adrenoceptors are blocked by β- adrenoceptor blocking drugs. They can further be categorised as selective or non-selective β-adrenoceptor blocking drugs.

The drugs studied below are:


1. Propranolol, *
2. Ateolol, *
3. Carvedilol.
4. Metibranolol
5. Betazolol
6. Bisoprolol
7. Esmolol
8. Metoprolol
9. Labetolol
10. Carvedilol

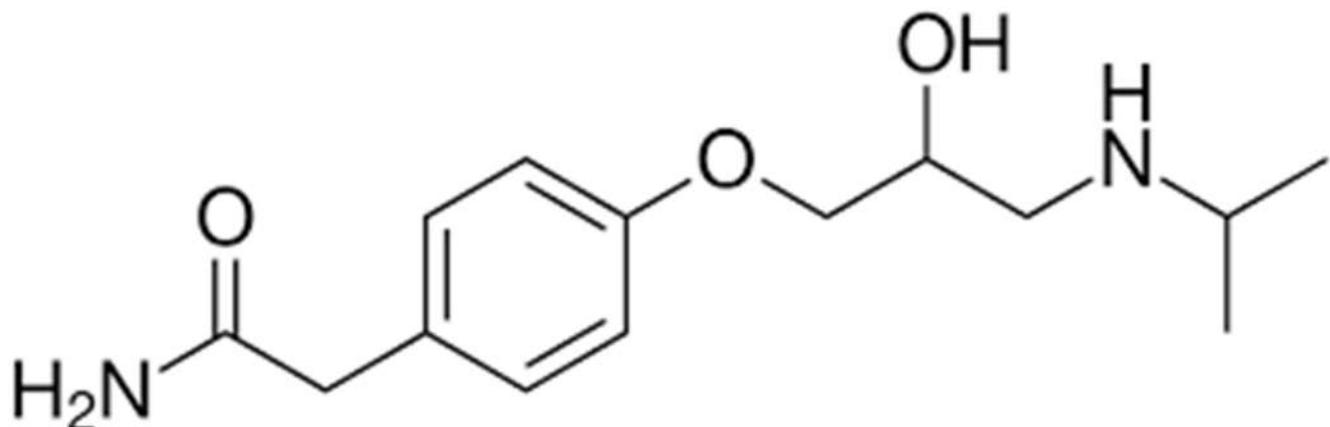
Propranolol

Structure

- Synthetic non-selective β -adrenergic antagonist (β -blocker).
- Contains naphthalene ring with ethanolamine side chain.

Mechanism of Action (MOA)

- Blocks β_1 receptors \rightarrow \downarrow heart rate, contractility, and cardiac output \rightarrow lowers blood pressure.
- Blocks β_2 receptors \rightarrow may cause bronchoconstriction (important in asthmatic patients).
- Reduces renin release from kidneys \rightarrow further contributes to antihypertensive effect.


Uses

- Hypertension \rightarrow lowers BP by decreasing cardiac output.
- Angina pectoris \rightarrow reduces myocardial oxygen demand.
- Arrhythmias \rightarrow controls tachyarrhythmias.
- Migraine prophylaxis \rightarrow reduces frequency of attacks.
- Essential tremor \rightarrow symptomatic relief.

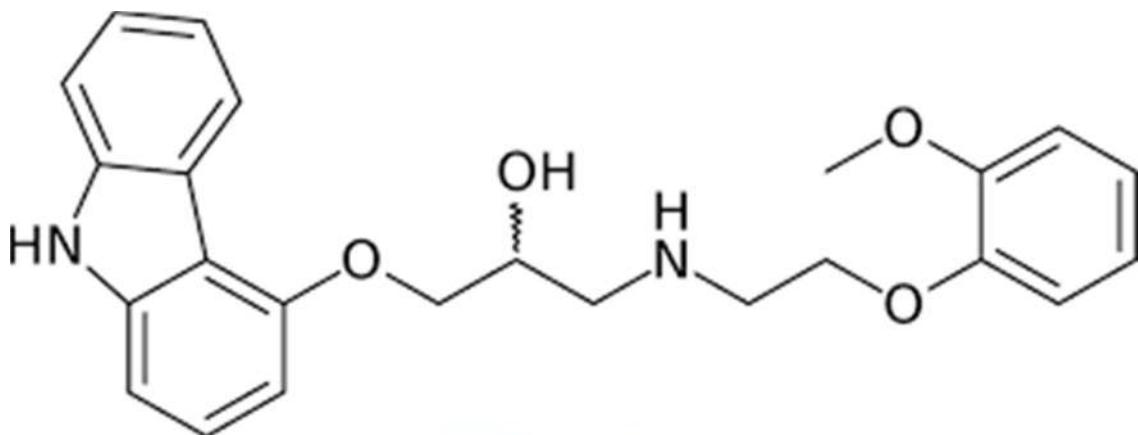
Atenolol

Structure

- Synthetic selective β_1 -adrenergic antagonist (cardioselective β -blocker).
- Contains a benzene ring with hydroxyl and amide side chains.

Mechanism of Action (MOA)

- Blocks β_1 receptors in the heart \rightarrow \downarrow heart rate, contractility, and cardiac output \rightarrow lowers blood pressure.
- Minimal β_2 blockade \rightarrow less bronchoconstriction \rightarrow safer in asthmatics than non-selective β -blockers.
- Reduces renin release from kidneys \rightarrow contributes to antihypertensive effect.


Uses

- Hypertension \rightarrow first-line therapy.
- Angina pectoris \rightarrow decreases myocardial oxygen demand.
- Arrhythmias \rightarrow especially supraventricular tachycardia.
- Post-myocardial infarction \rightarrow reduces mortality risk.

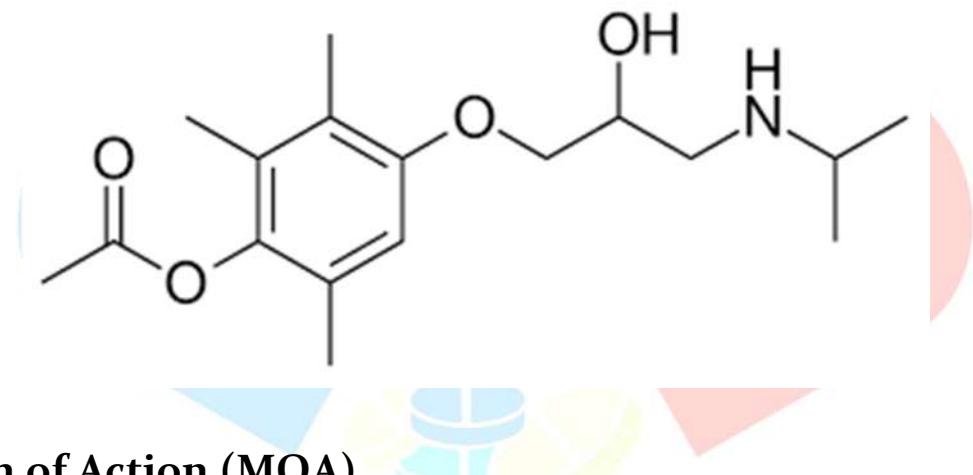
Carvedilol

Structure

- Synthetic non-selective β -adrenergic antagonist with α_1 -blocking activity.
- Contains carbazole ring and ethanolamine side chain.

Mechanism of Action (MOA)

- Blocks β_1 and β_2 receptors \rightarrow \downarrow heart rate, contractility, and cardiac output.
- Blocks α_1 receptors \rightarrow vasodilation \rightarrow \downarrow peripheral vascular resistance.
- Reduces oxidative stress and improves endothelial function (additional cardioprotective effects).


Uses

- Hypertension \rightarrow lowers BP via β -blockade and α_1 -mediated vasodilation.
- Heart failure \rightarrow improves survival and reduces morbidity.
- Angina pectoris \rightarrow decreases myocardial oxygen demand.
- Post-myocardial infarction \rightarrow reduces risk of reinfarction and mortality.

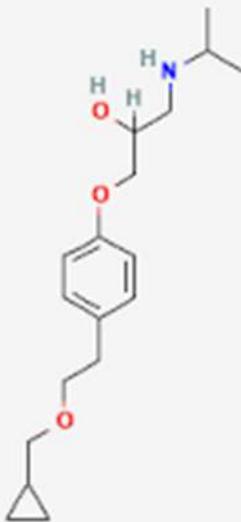
Metipranolol

Structure

- Synthetic non-selective β -adrenergic antagonist (β -blocker).
- Contains naphthalene ring with ethanolamine side chain.

Mechanism of Action (MOA)

- Blocks β_1 receptors \rightarrow \downarrow heart rate, contractility, and cardiac output \rightarrow lowers blood pressure.
- Blocks β_2 receptors \rightarrow may cause bronchoconstriction; less commonly used in asthma.
- Reduces renin release from kidneys \rightarrow contributes to antihypertensive effect.


Uses

- Hypertension \rightarrow lowers blood pressure.
- Glaucoma \rightarrow topical ophthalmic use \downarrow intraocular pressure.
- Angina pectoris \rightarrow reduces myocardial oxygen demand.
- Arrhythmias \rightarrow controls tachyarrhythmias.

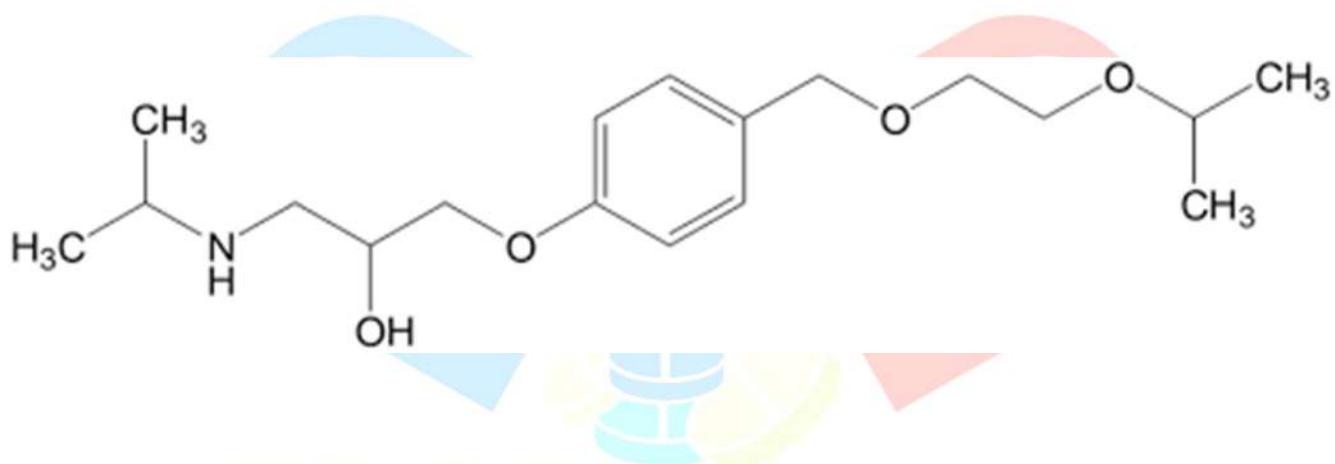
Betaxolol

Structure

- Synthetic selective β_1 -adrenergic antagonist (cardioselective β -blocker).
- Contains aromatic ring with ethanolamine side chain.

Mechanism of Action (MOA)

- Blocks β_1 receptors \rightarrow \downarrow heart rate, contractility, and cardiac output \rightarrow lowers blood pressure.
- Minimal β_2 blockade \rightarrow safer in patients with asthma or COPD.
- Reduces renin release from kidneys \rightarrow contributes to antihypertensive effect.


Uses

- Hypertension \rightarrow reduces blood pressure.
- Angina pectoris \rightarrow decreases myocardial oxygen demand.
- Glaucoma (topical use) \rightarrow decreases intraocular pressure.
- Arrhythmias \rightarrow especially supraventricular tachycardia.

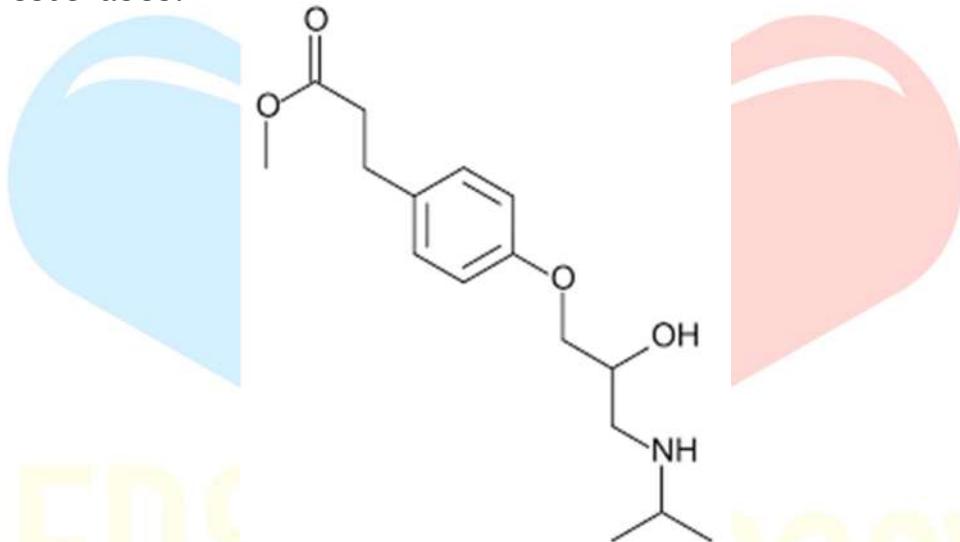
Bisoprolol

Structure

- Synthetic selective β_1 -adrenergic antagonist (cardioselective β -blocker).
- Contains aromatic ring with ethanolamine side chain.

Mechanism of Action (MOA)

- Blocks β_1 receptors \rightarrow \downarrow heart rate, contractility, and cardiac output \rightarrow lowers blood pressure.
- Minimal β_2 blockade \rightarrow safer in asthma or COPD.
- Reduces renin release from kidneys \rightarrow contributes to antihypertensive effect.


Uses

- Hypertension \rightarrow lowers blood pressure.
- Chronic heart failure \rightarrow improves survival and reduces morbidity.
- Angina pectoris \rightarrow decreases myocardial oxygen demand.
- Arrhythmias \rightarrow controls supraventricular tachycardia.

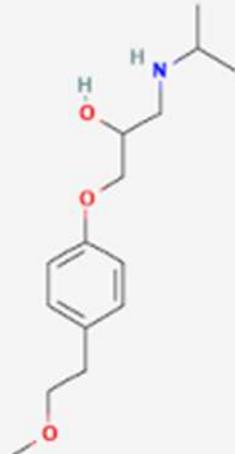
Esmolol

Structure

- Synthetic selective β_1 -adrenergic antagonist (cardioselective β -blocker).
- Ultra-short-acting due to ester linkage \rightarrow rapidly metabolized by plasma esterases.

Mechanism of Action (MOA)

- Blocks β_1 receptors \rightarrow \downarrow heart rate, contractility, and cardiac output \rightarrow lowers blood pressure.
- Minimal β_2 blockade \rightarrow safer in asthma or COPD.
- Rapid onset and very short duration \rightarrow useful for acute control of heart rate.


Uses

- Supraventricular tachycardia \rightarrow rapid control of heart rate.
- Perioperative hypertension and tachycardia \rightarrow especially during surgery.
- Acute arrhythmias \rightarrow short-term management.
- Myocardial infarction \rightarrow acute heart rate control (adjunct).

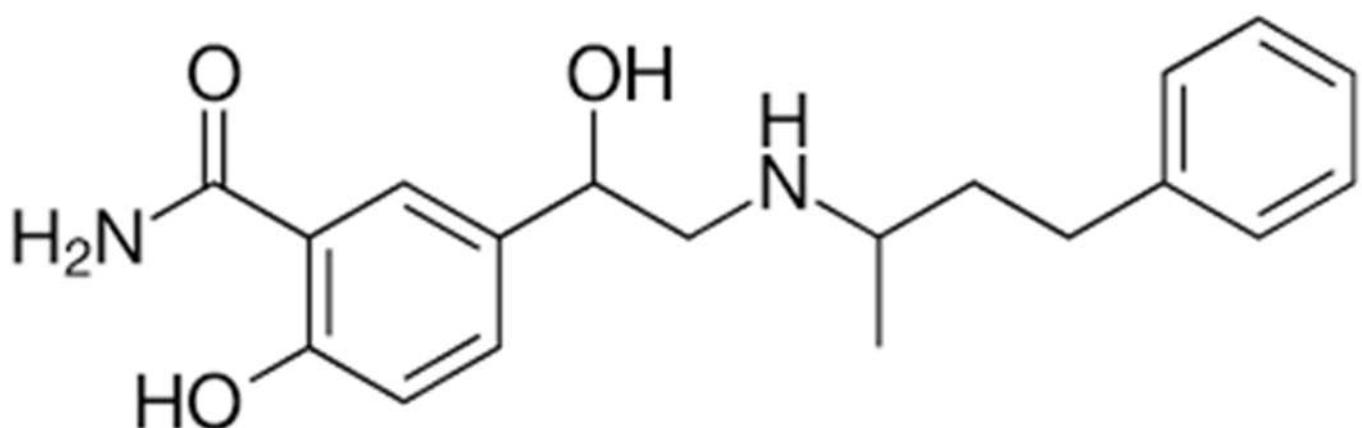
Metoprolol

Structure

- Synthetic selective β_1 -adrenergic antagonist (cardioselective β -blocker).
- Contains aromatic ring with ethanolamine side chain.

Mechanism of Action (MOA)

- Blocks β_1 receptors \rightarrow ↓ heart rate, contractility, and cardiac output \rightarrow lowers blood pressure.
- Minimal β_2 blockade \rightarrow safer in asthma or COPD.
- Reduces renin release from kidneys \rightarrow contributes to antihypertensive effect.


Uses

- Hypertension \rightarrow lowers blood pressure.
- Angina pectoris \rightarrow decreases myocardial oxygen demand.
- Chronic heart failure \rightarrow improves survival and reduces morbidity.
- Arrhythmias \rightarrow especially supraventricular tachycardia.
- Post-myocardial infarction \rightarrow reduces mortality risk.

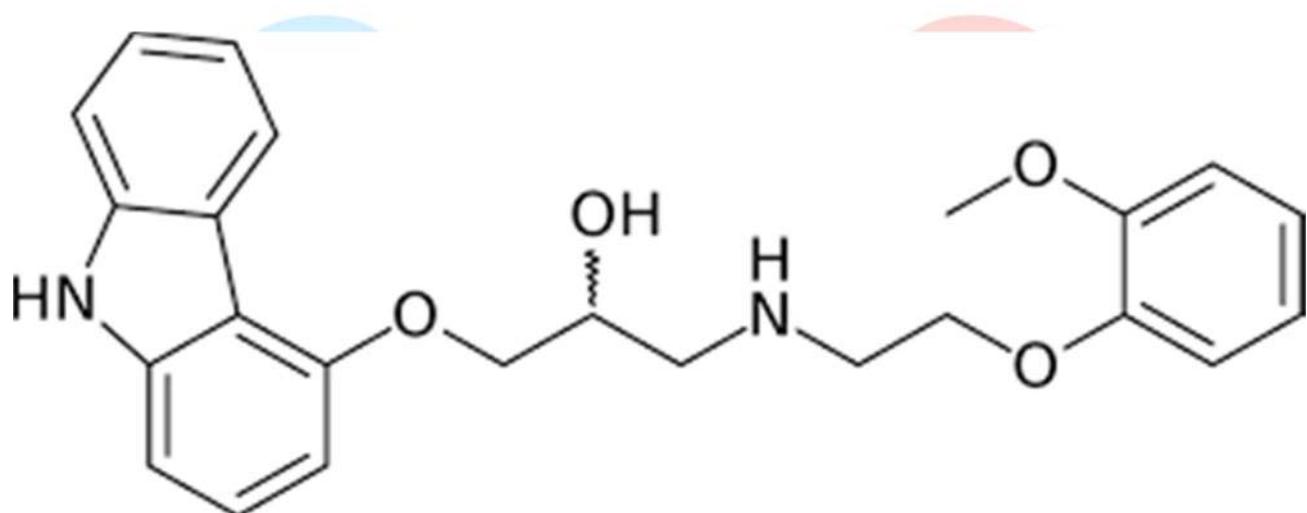
Labetalol

Structure

- Synthetic non-selective β -adrenergic antagonist with α_1 -blocking activity.
- Contains a phenylpropanolamine core with hydroxyl and amine groups.

Mechanism of Action (MOA)

- Blocks β_1 and β_2 receptors \rightarrow \downarrow heart rate, contractility, and cardiac output.
- Blocks α_1 receptors \rightarrow vasodilation \rightarrow \downarrow peripheral vascular resistance.
- Reduces blood pressure without significant reflex tachycardia.


Uses

- Hypertension \rightarrow including severe or emergency cases.
- Hypertensive crisis in pregnancy \rightarrow preferred due to combined α and β blockade.
- Heart failure (adjunct therapy) \rightarrow reduces afterload.

Carvedilol

Structure

- Synthetic non-selective β -adrenergic antagonist with α_1 -blocking activity.
- Contains carbazole ring and ethanolamine side chain.

Mechanism of Action (MOA)

- Blocks β_1 and β_2 receptors \rightarrow \downarrow heart rate, contractility, and cardiac output.
- Blocks α_1 receptors \rightarrow vasodilation \rightarrow \downarrow peripheral vascular resistance.
- Reduces oxidative stress and improves endothelial function \rightarrow cardioprotective effects.

Uses

- Hypertension \rightarrow lowers BP via combined α and β blockade.
- Heart failure \rightarrow improves survival and reduces morbidity.
- Angina pectoris \rightarrow decreases myocardial oxygen demand.
- Post-myocardial infarction \rightarrow reduces risk of reinfarction and mortality.